Truth and Paradox

JC Beall and Michael Glanzberg

University of Connecticut and University of California, Davis
For some time now, we have been working on a (much-delayed) survey of the Liar paradox.

Not only a huge amount of work, over some 2000 years, but a large number of fundamental ideas in logic, surround the Liar.

Even so, we have found that there is something to be learned by looking at how the various options fit together.

- Something about where the ‘state of the art’ lies.
- Something about what is really going on with the paradox, and what is important about it.
For some time now, we have been working on a (much-delayed) survey of the Liar paradox.

Not only a huge amount of work, over some 2000 years, but a large number of fundamental ideas in logic, surround the Liar.

Even so, we have found that there is something to be learned by looking at how the various options fit together.

- Something about where the ‘state of the art’ lies.
- Something about what is really going on with the paradox, and what is important about it.
For some time now, we have been working on a (much-delayed) survey of the Liar paradox.

Not only a huge amount of work, over some 2000 years, but a large number of fundamental ideas in logic, surround the Liar.

Even so, we have found that there is something to be learned by looking at how the various options fit together.

- Something about where the ‘state of the art’ lies.
- Something about what is really going on with the paradox, and what is important about it.
Goal: Picture of *Some* Work on the Liar Paradox

- For some time now, we have been working on a (much-delayed) survey of the Liar paradox.
- Not only a huge amount of work, over some 2000 years, but a large number of fundamental ideas in logic, surround the Liar.
- Even so, we have found that there is something to be learned by looking at how the various options fit together.
 - Something about where the ‘state of the art’ lies.
 - Something about what is really going on with the paradox, and what is important about it.
The Guiding Theme

- We see the dominant force guiding choices among these issues as a familiar tension between
 - Completeness
 - Consistency

- How this tension should be resolved depends in part of some larger issues about the nature of truth.

- To bring out these issues, we will in many places ignore important details, and – given time – we will omit a lot of important approaches. (Some of what we’ll skip will likely be covered by others during the conference.)
We see the dominant force guiding choices among these issues as a familiar tension between
- Completeness
- Consistency

How this tension should be resolved depends in part of some larger issues about the nature of truth.

To bring out these issues, we will in many places ignore important details, and – given time – we will omit a lot of important approaches. (Some of what we’ll skip will likely be covered by others during the conference.)
The Guiding Theme

- We see the dominant force guiding choices among these issues as a familiar tension between
 - Completeness
 - Consistency

- How this tension should be resolved depends in part of some larger issues about the nature of truth.

- To bring out these issues, we will in many places ignore important details, and – given time – we will omit a lot of important approaches. (Some of what we’ll skip will likely be covered by others during the conference.)
The Guiding Theme

- We see the dominant force guiding choices among these issues as a familiar tension between
 - Completeness
 - Consistency

- How this tension should be resolved depends in part of some larger issues about the nature of truth.

- To bring out these issues, we will in many places ignore important details, and – given time – we will omit a lot of important approaches. (Some of what we’ll skip will likely be covered by others during the conference.)
A Quick Review: Truth and Liars

Two Views of Truth
Transparent Truth
Semantic Truth

Truth: Capture and Release
Anatomy of a Liar
Contradiction
Discerning the Liar’s Lesson

A Quick Review: Truth and Liars
Two Basic T-principles:

Capture: \(\phi \Rightarrow Tr(\neg \phi) \).
Release: \(Tr(\neg \phi) \Rightarrow \phi \).

‘⇒’ is a place-holder for different devices, yielding different forms of Capture and Release.

- Conditional. (T-sentences)
- Turnstile/Rule. (T-rules)

Note: we will use ‘RC’ and ‘RR’ for Rule Capture and Rule Release, and similarly ‘CC’ and ‘CR’.
Two Basic T-principles:

Capture: $\phi \Rightarrow Tr(\neg \phi)$.
Release: $Tr(\neg \phi) \Rightarrow \phi$.

‘\Rightarrow’ is a place-holder for different devices, yielding different forms of Capture and Release.

- Conditional. (T-sentences)
- Turnstile/Rule. (T-rules)

Note: we will use ‘RC’ and ‘RR’ for Rule Capture and Rule Release, and similarly ‘CC’ and ‘CR’.
Two Basic T-principles:

Capture: $\phi \Rightarrow Tr(\neg \phi \neg)$.

Release: $Tr(\neg \phi \neg) \Rightarrow \phi$.

‘\Rightarrow’ is a place-holder for different devices, yielding different forms of Capture and Release.

- Conditional. (T-sentences)
- Turnstile/Rule. (T-rules)

Note: we will use ‘RC’ and ‘RR’ for Rule Capture and Rule Release, and similarly ‘CC’ and ‘CR’.
Two Basic T-principles:

Capture: \(\phi \Rightarrow \text{Tr}(\neg \phi) \).
Release: \(\text{Tr}(\neg \phi) \Rightarrow \phi \).

‘\(\Rightarrow \)’ is a place-holder for different devices, yielding different forms of Capture and Release.

- Conditional. (\(T\)-sentences)
- Turnstile/Rule. (\(T\)-rules)

Note: we will use ‘RC’ and ‘RR’ for Rule Capture and Rule Release, and similarly ‘CC’ and ‘CR’.
Two Basic T-principles:

- **Capture**: $\phi \Rightarrow Tr(\neg \phi)$
- **Release**: $Tr(\neg \phi) \Rightarrow \phi$

‘⇒’ is a place-holder for different devices, yielding different forms of Capture and Release.

- Conditional. (T-sentences)
- Turnstile/Rule. (T-rules)

Note: we will use ‘RC’ and ‘RR’ for *Rule Capture* and *Rule Release*, and similarly ‘CC’ and ‘CR’.
Two Basic T-principles:

- **Capture:** $\phi \Rightarrow \text{Tr}(\neg \phi)$.
- **Release:** $\text{Tr}(\neg \phi) \Rightarrow \phi$.

‘\Rightarrow’ is a place-holder for different devices, yielding different forms of Capture and Release.

- Conditional. (T-sentences)
- Turnstile/Rule. (T-rules)

Note: we will use ‘RC’ and ‘RR’ for Rule Capture and Rule Release, and similarly ‘CC’ and ‘CR’.
A truth predicate.

Reference to sentences.

Negation. (Note on Curry.)

Together, a sentence \(L \) which says of itself (only) that it is not true. In symbols:

\[
L : \quad \neg \text{Tr}(\neg L) \tag{1}
\]

\(L \) will be our example of a Liar sentence.
A truth predicate.

- Reference to sentences.
- Negation. (Note on Curry.)

Together, a sentence L which says of itself (only) that it is not true. In symbols:

$$L : \neg \text{Tr} \left(\neg L \right)$$

L will be our example of a Liar sentence.
A truth predicate.

Reference to sentences.

Negation. (Note on Curry.)

Together, a sentence L which says of itself (only) that it is not true. In symbols:

$$L : \neg Tr(\neg L)$$

L will be our example of a Liar sentence.
A *truth predicate*.

Reference to sentences.

Negation. (Note on Curry.)

Together, a sentence \(L \) which says of itself (only) that it is not true. In symbols:

\[
L : \neg Tr(\neg L) \tag{1}
\]

\(L \) will be our example of a *Liar sentence*.
A *truth predicate*.
Reference to sentences.
Negation. (Note on Curry.)
Together, a sentence \(L \) which says of itself (only) that it is not true. In symbols:

\[
L : \quad \neg Tr(\neg L) \quad \tag{1}
\]

\(L \) will be our example of a *Liar sentence*.

\[\]

JC Beall and Michael Glanzberg

Truth and Paradox
Assume at least RC and RR

\[
Tr(\neg \phi) \vdash \phi
\]

(2)

Classical logic + (1) + (2) = Contradiction.
Assume at least RC and RR

\[Tr(\neg \phi) \not\models \phi \tag{2} \]

Classical logic + (1) + (2) = Contradiction.

JC Beall and Michael Glanzberg
Truth and Paradox
Assume at least RC and RR

\[Tr(\neg \phi \wedge) \vdash \phi \]

(2)

Classical logic + (1) + (2) = Contradiction.
The Liar effects a familiar tension between ‘incompleteness’ and ‘inconsistency’ – expressing all ‘semantic facts’ consistently.

Navigating between such options usually involves different approaches to the basic Capture and Release principles.

What the Liar teaches us about our language, and in particular its truth (and related) predicate(s), turns – at least in part – on what truth is supposed to be.

We will focus on two basic conceptions of truth, each of which constrains one’s options with respect to Capture and Release.
The Liar effects a familiar tension between ‘incompleteness’ and ‘inconsistency’ – expressing all ‘semantic facts’ consistently.

Navigating between such options usually involves different approaches to the basic Capture and Release principles.

What the Liar teaches us about our language, and in particular its truth (and related) predicate(s), turns – at least in part – on what truth is supposed to be.

We will focus on two basic conceptions of truth, each of which constrains one’s options with respect to Capture and Release.
The Liar effects a familiar tension between ‘incompleteness’ and ‘inconsistency’ – expressing all ‘semantic facts’ consistently.

Navigating between such options usually involves different approaches to the basic Capture and Release principles.

What the Liar teaches us about our language, and in particular its truth (and related) predicate(s), turns – at least in part – on what truth is supposed to be.

We will focus on two basic conceptions of truth, each of which constrains one’s options with respect to Capture and Release.
The Liar effects a familiar tension between ‘incompleteness’ and ‘inconsistency’ – expressing all ‘semantic facts’ consistently.

Navigating between such options usually involves different approaches to the basic Capture and Release principles.

What the Liar teaches us about our language, and in particular its truth (and related) predicate(s), turns – at least in part – on what truth is supposed to be.

We will focus on two basic conceptions of truth, each of which constrains one’s options with respect to Capture and Release.
The Liar effects a familiar tension between ‘incompleteness’ and ‘inconsistency’ – expressing all ‘semantic facts’ consistently.

Navigating between such options usually involves different approaches to the basic Capture and Release principles.

What the Liar teaches us about our language, and in particular its truth (and related) predicate(s), turns – at least in part – on what truth is supposed to be.

We will focus on two basic conceptions of truth, each of which constrains one’s options with respect to Capture and Release.
Disquotation-inspired view.
- Truth is an expressive device.
- Truth is best conceived as a predicate \textit{added} to an interpreted language to serve as an expressive device.

Semantics-inspired view.
- Truth is a fundamental concept in semantics.
- Truth (value) is at least one of the basic semantic values.
- Truth predicates report this value.
Disquotation-inspired view.

- Truth is an expressive device.
- Truth is best conceived as a predicate *added* to an interpreted language to serve as an expressive device.

Semantics-inspired view.

- Truth is a fundamental concept in semantics.
- Truth (value) is at least one of the basic semantic values.
- Truth predicates report this value.
Disquotation-inspired view.
- Truth is an expressive device.
- Truth is best conceived as a predicate *added* to an interpreted language to serve as an expressive device.

Semantics-inspired view.
- Truth is a fundamental concept in semantics.
- Truth (value) is at least one of the basic semantic values.
- Truth predicates report this value.
• Implements the first view.

• The device Tr serves its expressive job by being transparent – see-through – over the whole language: $Tr(⌜\phi⌝)$ and ϕ are intersubstitutable in all (non-opaque) contexts, for all ϕ in the language.

• Given $\phi \vdash \phi$, transparency yields RC and RR.
Implements the first view.

The device Tr serves its expressive job by being *transparent* – *see-through* – over the whole language: $\text{Tr}(\lnot \phi)$ and ϕ are intersubstitutable in all (non-opaque) contexts, for all ϕ in the language.

Given $\phi \vdash \phi$, transparency yields RC and RR.
Implements the first view.

The device Tr serves its expressive job by being *transparent* – *see-through* – over the whole language: $Tr(\langle \phi \rangle)$ and ϕ are intersubstitutable in all (non-opaque) contexts, for all ϕ in the language.

Given $\phi \vdash \phi$, transparency yields RC and RR.
• Implements the first view.

• The device Tr serves its expressive job by being transparent – see-through – over the whole language: $Tr(⌜\neg\phi\⌝)$ and ϕ are intersubstitutable in all (non-opaque) contexts, for all ϕ in the language.

• Given $\phi \vdash \phi$, transparency yields RC and RR.
A Quick Review: Truth and Liars
Two Views of Truth
Transparent Truth
Semantic Truth

Transparent Truth

‘Semantic’ Truth

- Implements the second view.
- Tr reports semantic property of sentences.
- Classical model-theoretic version:
 \[M \models \phi \iff M \models Tr(⌜\neg \phi⌝). \]
● Implements the second view.

● Tr reports semantic property of sentences.

● Classical model-theoretic version:
\[
\mathcal{M} \models \phi \iff \mathcal{M} \models Tr(\Box \phi \Box).
\]
- Implements the second view.
- \(Tr \) reports semantic property of sentences.
- Classical model-theoretic version:
 \[M \models \phi \iff M \models Tr(\Box_\phi). \]
Implements the second view.

Tr reports semantic property of sentences.

Classical model-theoretic version:

$$\mathcal{M} \models \phi \iff \mathcal{M} \models Tr(\neg \phi).$$
Transparent Truth
Given $\phi \vdash \phi$, transparency approaches are committed to unrestricted RC and RR.

As such, the logic of transparent truth is non-classical, since LEM + EFQ + RC + RR+\lor-Elim = Triviality.

We will assume \lor-Elim throughout.

Basic Options:
- Paracomplete: reject LEM.
- Paraconsistent: reject EFQ.
Given $\phi \vdash \phi$, transparency approaches are committed to unrestricted RC and RR.

As such, the logic of transparent truth is non-classical, since $\text{LEM} + \text{EFQ} + \text{RC} + \text{RR} + \vee\text{-Elim} = \text{Triviality}$.

We will assume $\vee\text{-Elim}$ throughout.

Basic Options:
- Paracomplete: reject LEM.
- Paraconsistent: reject EFQ.
Given $\phi \vdash \phi$, transparency approaches are committed to unrestricted RC and RR.

As such, the logic of transparent truth is non-classical, since $\text{LEM} + \text{EFQ} + \text{RC} + \text{RR} + \neg\text{-Elim} = \text{Triviality}$.

We will assume $\lor\text{-Elim}$ throughout.

Basic Options:
- Paracomplete: reject LEM.
- Paraconsistent: reject EFQ.
Given \(\phi \vdash \phi \), transparency approaches are committed to unrestricted RC and RR.

As such, the logic of transparent truth is non-classical, since LEM + EFQ + RC + RR + \(\lor\)-Elim = Triviality.

We will assume \(\lor\)-Elim throughout.

Basic Options:
- Paracomplete: reject LEM.
- Paraconsistent: reject EFQ.
Given $\phi \vdash \phi$, transparency approaches are committed to unrestricted RC and RR.

As such, the logic of transparent truth is non-classical, since $\text{LEM} + \text{EFQ} + \text{RC} + \text{RR} + \lor\text{-Elim} = \text{Triviality}$.

We will assume $\lor\text{-Elim}$ throughout.

Basic Options:
- Paracomplete: reject LEM.
- Paraconsistent: reject EFQ.
Basic Paracomplete Picture

Intuitively: ‘paracomplete’ for *beyond* (negation) *completeness*
Motivation

- Full transparent truth: $Tr(\neg\neg\phi)$ and ϕ are intersubstitutable in all (non-opaque) contexts, for all ϕ in the language.

- Some sense of (non-epistemic) ‘indeterminacy’ or ‘unsettledness’ in the language, where, at the very least, this involves failure of LEM: $\not\vdash \phi \lor \neg\phi$.

Note: there may, of course, be some significant fragment of the language for which LEM holds. The idea is simply that LEM does not hold over the entire language.
Motivation

- Full transparent truth: \(Tr(\lnot \phi \lnot) \) and \(\phi \) are intersubstitutable in all (non-opaque) contexts, for all \(\phi \) in the language.

- Some sense of (non-epistemic) ‘indeterminacy’ or ‘unsettledness’ in the language, where, at the very least, this involves failure of LEM: \(\not \phi \lor \neg \phi \).

Note: there may, of course, be some significant fragment of the language for which LEM holds. The idea is simply that LEM does not hold over the entire language.
Motivation

- Full transparent truth: $Tr(\neg \phi)$ and ϕ are intersubstitutable in all (non-opaque) contexts, for all ϕ in the language.

- Some sense of (non-epistemic) ‘indeterminacy’ or ‘unsettledness’ in the language, where, at the very least, this involves failure of LEM: $\nvdash \phi \lor \neg \phi$.

Note: there may, of course, be some significant fragment of the language for which LEM holds. The idea is simply that LEM does not hold over the entire language.
Standard Desiderata

D1. Some way of truly ‘classifying’ – in the given language – any ‘indeterminate’ or ‘defective’ or whatever sentences.

D2. Some suitable conditional \rightarrow such that $\phi \rightarrow \phi$ holds for all ϕ, where ‘suitable’ involves at least Rule Modus Ponens: $\phi, \phi \rightarrow \psi \vdash \psi$.

D3. Avoid ‘revenge’.

(Note: D3, we think, is difficult to evaluate; it depends on complicated issues concerning the role of semantics or model theory. This might be a key point of distinction between the given ‘two views of truth’. Time-permitting, discussion can return to this.)
Standard Desiderata

D1. Some way of truly ‘classifying’ – in the given language – any ‘indeterminate’ or ‘defective’ or whatever sentences.

D2. Some suitable conditional \rightarrow such that $\phi \rightarrow \phi$ holds for all ϕ, where ‘suitable’ involves at least Rule Modus Ponens: $\phi, \phi \rightarrow \psi \vdash \psi$.

D3. Avoid ‘revenge’.

(Note: D3, we think, is difficult to evaluate; it depends on complicated issues concerning the role of semantics or model theory. This might be a key point of distinction between the given ‘two views of truth’. Time-permitting, discussion can return to this.)
Standard Desiderata

D1. Some way of truly ‘classifying’ — in the given language — any ‘indeterminate’ or ‘defective’ or whatever sentences.

D2. Some suitable conditional → such that φ → φ holds for all φ, where ‘suitable’ involves at least Rule Modus Ponens: φ, φ → ψ ⊢ ψ.

D3. Avoid ‘revenge’.

(Note: D3, we think, is difficult to evaluate; it depends on complicated issues concerning the role of semantics or model theory. This might be a key point of distinction between the given ‘two views of truth’. Time-permitting, discussion can return to this.)
Standard Desiderata

D1. Some way of truly ‘classifying’ – in the given language – any ‘indeterminate’ or ‘defective’ or whatever sentences.

D2. Some suitable conditional → such that \(\phi \to \phi \) holds for all \(\phi \), where ‘suitable’ involves at least Rule Modus Ponens: \(\phi, \phi \to \psi \vdash \psi \).

D3. Avoid ‘revenge’.

(Note: D3, we think, is difficult to evaluate; it depends on complicated issues concerning the role of semantics or model theory. This might be a key point of distinction between the given ‘two views of truth’. Time-permitting, discussion can return to this.)
Recall Kripke’s (non-classical, vs KF etc) theory of truth. (KF is not Transparent, for our purposes.)

Use of three-valued logic (e.g. Strong Kleene) validates Rule Capture and Release: $\phi \vdash^\circ Tr(\neg \phi \neg)$.

This is a paraconsistent account that achieves neither D1 nor D2.

Whether ‘revenge’ strikes depends, in part, on what ‘revenge’ amounts to. (We leave this for discussion.)
Familiar Example: Kripke

- Recall Kripke’s (non-classical, vs KF etc) theory of truth. (KF is not Transparent, for our purposes.)
- Use of three-valued logic (e.g. Strong Kleene) validates Rule Capture and Release: $\phi \vdash \top Tr(\neg \neg \phi \downarrow)$.
- This is a paracomplete account that achieves neither D1 nor D2.
- Whether ‘revenge’ strikes depends, in part, on what ‘revenge’ amounts to. (We leave this for discussion.)
Recall Kripke’s (non-classical, vs KF etc) theory of truth. (KF is not Transparent, for our purposes.)

Use of three-valued logic (e.g. Strong Kleene) validates Rule Capture and Release: $\phi \not\models Tr(\Gamma \phi \top)$.

This is a paracomplete account that achieves neither D1 nor D2.

Whether ‘revenge’ strikes depends, in part, on what ‘revenge’ amounts to. (We leave this for discussion.)
Recall Kripke’s (non-classical, vs KF etc) theory of truth. (KF is not Transparent, for our purposes.)

Use of three-valued logic (e.g. Strong Kleene) validates *Rule Capture and Release*: $\phi \vdash Tr(\Box \phi)$.

This is a paracomplete account that achieves neither D1 nor D2.

Whether ‘revenge’ strikes depends, in part, on what ‘revenge’ amounts to. (We leave this for discussion.)
Familiar Example: Kripke

- Recall Kripke’s (non-classical, vs KF etc) theory of truth. (KF is not Transparent, for our purposes.)
- Use of three-valued logic (e.g. Strong Kleene) validates Rule Capture and Release: $\phi \vdash \text{Tr} (\neg \neg \phi)$.
- This is a paracomplete account that achieves neither D1 nor D2.
- Whether ‘revenge’ strikes depends, in part, on what ‘revenge’ amounts to. (We leave this for discussion.)
On D1: Commenting on ‘Indeterminacy’

Given a Liar, like L, that uses transparent truth, consistency precludes saying that L is not (transparently) true. What, then, might one be (consistently) saying when saying that L is ‘not true’?

O1. Ordinary negation, Stronger truth (Struth): $\neg Str(\neg L)$

O2. Stronger negation, ordinary (transparent) truth: $\sim Tr(\neg L)$

O1 is standard (often in the guise of ‘determinately’ operators), and recently explored by Field. (One of us prefers O2, but in a broader paraconsistent setting; we’ll ignore O2 here.)
Given a Liar, like L, that uses *transparent* truth, consistency precludes saying that L is not (transparently) true. What, then, might one be (consistently) saying when saying that L is ‘not true’?

O1. Ordinary negation, Stronger truth (Struth): $\neg Str(\neg L)$

O2. Stronger negation, ordinary (transparent) truth: $\sim Tr(\neg L)$

O1 is standard (often in the guise of ‘determinately’ operators), and recently explored by Field. (One of us prefers O2, but in a broader paraconsistent setting; we’ll ignore O2 here.)
On D1: Commenting on ‘Indeterminacy’

Given a Liar, like \(L \), that uses transparent truth, consistency precludes saying that \(L \) is not (transparently) true. What, then, might one be (consistently) saying when saying that \(L \) is ‘not true’?

O1. Ordinary negation, Stronger truth (Struth): \(\neg Str(\neg L) \)

O2. Stronger negation, ordinary (transparent) truth: \(\sim Tr(\neg L) \)

O1 is standard (often in the guise of ‘determinately’ operators), and recently explored by Field. (One of us prefers O2, but in a broader paraconsistent setting; we’ll ignore O2 here.)
Given a Liar, like \(L \), that uses transparent truth, consistency precludes saying that \(L \) is not (transparently) true. What, then, might one be (consistently) saying when saying that \(L \) is ‘not true’?

O1. Ordinary negation, Stronger truth (Struth): \(\neg Str(\neg L) \)

O2. Stronger negation, ordinary (transparent) truth: \(\sim Tr(\neg L) \)

O1 is standard (often in the guise of ‘determinately’ operators), and recently explored by Field. (One of us prefers O2, but in a broader paraconsistent setting; we’ll ignore O2 here.)
We will skip details, but mention that Field’s recent approach does the following.

- Introduce a suitable (non-truth-functional) conditional \rightarrow that yields D2, getting CC and CR (for transparent truth).
- Define a stratified family of ‘struth’ predicates via the new conditional; such predicates achieve D1, allowing ‘true commentary’ on the ‘indeterminate’ sentences.
- The new (stratified) struth predicates satisfy RC, RR, and CR, but they do not satisfy CC, i.e. $\not\models \phi \rightarrow \text{Str}(\neg \phi \downarrow)$.

We will skip details, but mention that Field’s recent approach does the following.

- Introduce a suitable (non-truth-functional) conditional \rightarrow that yields D2, getting CC and CR (for transparent truth).
- Define a stratified family of ‘struth’ predicates via the new conditional; such predicates achieve D1, allowing ‘true commentary’ on the ‘indeterminate’ sentences.
- The new (stratified) struth predicates satisfy RC, RR, and CR, but they do not satisfy CC, i.e. $\not \models \phi \rightarrow Str(\neg \phi \neg)$.
Field: Towards D1 Via D2

We will skip details, but mention that Field’s recent approach does the following.

- Introduce a suitable (non-truth-functional) conditional \rightarrow that yields D2, getting CC and CR (for transparent truth).
- Define a stratified family of ‘struth’ predicates via the new conditional; such predicates achieve D1, allowing ‘true commentary’ on the ‘indeterminate’ sentences.
- The new (stratified) struth predicates satisfy RC, RR, and CR, but they do not satisfy CC, i.e. $\not\models \phi \rightarrow Str(\neg \phi \ldots)$.
Field: Towards D1 Via D2

We will skip details, but mention that Field’s recent approach does the following.

- Introduce a suitable (non-truth-functional) conditional \(\rightarrow \) that yields D2, getting CC and CR (for transparent truth).
- Define a stratified family of ‘struth’ predicates via the new conditional; such predicates achieve D1, allowing ‘true commentary’ on the ‘indeterminate’ sentences.
- The new (stratified) struth predicates satisfy RC, RR, and CR, but they do not satisfy CC, i.e. \(\not \phi \rightarrow \text{Str}\(\phi\)\).
We will skip details, but mention that Field’s recent approach does the following.

- Introduce a suitable (non-truth-functional) conditional \rightarrow that yields D2, getting CC and CR (for transparent truth).
- Define a stratified family of ‘struth’ predicates via the new conditional; such predicates achieve D1, allowing ‘true commentary’ on the ‘indeterminate’ sentences.
- The new (stratified) struth predicates satisfy RC, RR, and CR, but they do not satisfy CC, i.e. $\nvdash \phi \rightarrow \text{Str} (\neg \phi)$.
Major Issues

One issue is a basic philosophical one:

- Indeterminacy: there’s an issue as to whether any ordinary sense of ‘indeterminacy’ (e.g., vagueness) applies to truth-theoretic paradoxes.

Two other issues are:

- Curry paradox.
- Validity and Truth-Preservation.

We will briefly discuss these last two after briefly touching on the paraconsistent option, since the issues confront both approaches.
Major Issues

One issue is a basic philosophical one:

- **Indeterminacy**: there’s an issue as to whether any ordinary sense of ‘indeterminacy’ (e.g., vagueness) applies to truth-theoretic paradoxes.

Two other issues are:

- **Curry paradox**.
- **Validity and Truth-Preservation**.

We will briefly discuss these last two after briefly touching on the paraconsistent option, since the issues confront both approaches.
Major Issues

One issue is a basic philosophical one:

- Indeterminacy: there’s an issue as to whether any ordinary sense of ‘indeterminacy’ (e.g., vagueness) applies to truth-theoretic paradoxes.

Two other issues are:

- Curry paradox.
- Validity and Truth-Preservation.

We will briefly discuss these last two after briefly touching on the paraconsistent option, since the issues confront both approaches.
Basic Paraconsistent Picture

Intuitively: ‘paraconsistent’ for beyond \textit{(negation)} consistency
Motivation

- Full transparent truth, as in the paracomplete case.
- If there is any ‘indeterminacy’ in the language, we have some *indeterminacy-closing* device in the language, some negation-like device \(\dag\) that yields \(\vdash \phi \lor \dag \phi\) for all \(\phi\).
- The indeterminacy-closing device(s), in concert with transparent truth, yields *overdeterminacy*.
- Such overdeterminacy tells us that, for any negation-like device \(\dag\) such that \(\vdash \phi \lor \dag \phi\), we have \(\phi, \dag \phi \not\models \psi\).
Full transparent truth, as in the paracomplete case.

If there is any ‘indeterminacy’ in the language, we have some *indeterminacy-closing* device in the language, some negation-like device \uparrow that yields $\vdash \phi \lor \uparrow \phi$ for all ϕ.

The indeterminacy-closing device(s), in concert with transparent truth, yields *overdeterminacy*.

Such overdeterminacy tells us that, for any negation-like device \uparrow such that $\vdash \phi \lor \uparrow \phi$, we have $\phi, \uparrow \phi \nvdash \psi$.
Full transparent truth, as in the paracomplete case.

If there is any ‘indeterminacy’ in the language, we have some indeterminacy-closing device in the language, some negation-like device \dagger that yields $\vdash \phi \lor \dagger \phi$ for all ϕ.

The indeterminacy-closing device(s), in concert with transparent truth, yields overdeterminacy.

Such overdeterminacy tells us that, for any negation-like device \dagger such that $\vdash \phi \lor \dagger \phi$, we have $\phi, \dagger \phi \not\vdash \psi$.
Motivation

- Full transparent truth, as in the paracomplete case.
- If there is any ‘indeterminacy’ in the language, we have some *indeterminacy-closing* device in the language, some negation-like device † that yields ⊢ φ ∨ †φ for all φ.
- The indeterminacy-closing device(s), in concert with transparent truth, yields *overdeterminacy*.
- Such overdeterminacy tells us that, for any negation-like device † such that ⊢ φ ∨ †φ, we have φ, †φ ⊬ ψ.
Motivation

- Full transparent truth, as in the paracomplete case.
- If there is any ‘indeterminacy’ in the language, we have some indeterminacy-closing device in the language, some negation-like device \(\dagger \) that yields \(\vdash \phi \lor \dagger \phi \) for all \(\phi \).
- The indeterminacy-closing device(s), in concert with transparent truth, yields overdeterminacy.
- Such overdeterminacy tells us that, for any negation-like device \(\dagger \) such that \(\vdash \phi \lor \dagger \phi \), we have \(\phi, \dagger \phi \not\vdash \psi \).
d1. Non-triviality! Some sentences are true and false, but some are ‘just true’.

d2. Some suitable conditional, as in the paracomplete case.

d3. Avoid ‘revenge’, as in paracomplete case.

Most dialetheic accounts get (d1) and (d2). As in the paracomplete accounts, (d3) is trickier to evaluate.
d1. Non-triviality! Some sentences are true and false, but some are ‘just true’.

d2. Some suitable conditional, as in the paracomplete case.

d3. Avoid ‘revenge’, as in paracomplete case.

Most dialetheic accounts get (d1) and (d2). As in the paracomplete accounts, (d3) is trickier to evaluate.
d1. Non-triviality! Some sentences are true and false, but some are ‘just true’.

d2. Some suitable conditional, as in the paracomplete case.

d3. Avoid ‘revenge’, as in paracomplete case.

Most dialetheic accounts get (d1) and (d2). As in the paracomplete accounts, (d3) is trickier to evaluate.
Standard Desiderata

d1. Non-triviality! Some sentences are true and false, but some are ‘just true’.

d2. Some suitable conditional, as in the paracomplete case.

d3. Avoid ‘revenge’, as in paracomplete case.

Most dialetheic accounts get (d1) and (d2). As in the paracomplete accounts, (d3) is trickier to evaluate.
Example: Orthodox Priest

- On the extensional level, one can think of Priest’s LP framework as the dual of K_3.
- To get LP from K_3, simply designate the ‘middle value’ (intuitively, this is now thought of as cases of overdeterminacy).
- This immediately yields CC and CR, and so T-sentences, for the *material* conditional; however, this is not a ‘suitable’ conditional (as Rule Modus Ponens fails for it).
- There are various ways of adding a suitable conditional. (We skip details here.) One thereby gets ‘real’ CC and CR.
Example: Orthodox Priest

- On the extensional level, one can think of Priest’s LP framework as the dual of K_3.
- To get LP from K_3, simply designate the ‘middle value’ (intuitively, this is now thought of as cases of overdeterminacy).
- This immediately yields CC and CR, and so T-sentences, for the material conditional; however, this is not a ‘suitable’ conditional (as Rule Modus Ponens fails for it).
- There are various ways of adding a suitable conditional. (We skip details here.) One thereby gets ‘real’ CC and CR.
Example: Orthodox Priest

- On the extensional level, one can think of Priest’s LP framework as the dual of K_3.
- To get LP from K_3, simply designate the ‘middle value’ (intuitively, this is now thought of as cases of *overdeterminacy*).
- This immediately yields CC and CR, and so T-sentences, for the *material* conditional; however, this is not a ‘suitable’ conditional (as Rule Modus Ponens fails for it).
- There are various ways of adding a suitable conditional. (We skip details here.) One thereby gets ‘real’ CC and CR.
Example: Orthodox Priest

- On the extensional level, one can think of Priest’s LP framework as the dual of K_3.
- To get LP from K_3, simply designate the ‘middle value’ (intuitively, this is now thought of as cases of overdeterminacy).
- This immediately yields CC and CR, and so T-sentences, for the material conditional; however, this is not a ‘suitable’ conditional (as Rule Modus Ponens fails for it).
- There are various ways of adding a suitable conditional. (We skip details here.) One thereby gets ‘real’ CC and CR.
Example: Orthodox Priest

- On the extensional level, one can think of Priest’s LP framework as the dual of K_3.
- To get LP from K_3, simply designate the ‘middle value’ (intuitively, this is now thought of as cases of overdeterminacy).
- This immediately yields CC and CR, and so T-sentences, for the material conditional; however, this is not a ‘suitable’ conditional (as Rule Modus Ponens fails for it).
- There are various ways of adding a suitable conditional. (We skip details here.) One thereby gets ‘real’ CC and CR.
Major Issues

One issue is partly philosophical, partly logical:

- Normalcy: there *may* be an issue concerning ‘just true’, in some sense the dual problem of the paracomplete approaches. (This is tricky, and related to the general trickiness of ‘revenge’ and one’s philosophy of ‘semantic values’. Time-permitting, discussion can take this up.)

Two other issues, as with the paracomplete, are:

- Curry paradox.
- Validity and Truth-Preservation.
Major Issues

One issue is partly philosophical, partly logical:

- Normalcy: there may be an issue concerning ‘just true’, in some sense the dual problem of the paracomplete approaches. (This is tricky, and related to the general trickiness of ‘revenge’ and one’s philosophy of ‘semantic values’. Time-permitting, discussion can take this up.)

Two other issues, as with the paracomplete, are:

- Curry paradox.
- Validity and Truth-Preservation.
One issue is partly philosophical, partly logical:

- Normalcy: there *may* be an issue concerning ‘just true’, in some sense the dual problem of the paracomplete approaches. (This is tricky, and related to the general trickiness of ‘revenge’ and one’s philosophy of ‘semantic values’. Time-permitting, discussion can take this up.)

Two other issues, as with the paracomplete, are:

- Curry paradox.
- Validity and Truth-Preservation.
We have noted that both paracomplete and paraconsistent approaches to transparent truth confront an issue involving validity and truth-preservation. We *briefly* sketch the issue, leaving further discussion for Discussion Time.
We have noted that both paracomplete and paraconsistent approaches to transparent truth confront an issue involving validity and truth-preservation. We briefly sketch the issue, leaving further discussion for Discussion Time.
Let \rightarrow be the ‘suitable conditional’, however defined.

- Being suitable, \rightarrow satisfies Rule Modus Ponens (RMP):
 $\phi, \phi \rightarrow \psi \vdash \psi$.

- Curry paradox shows that \rightarrow cannot satisfy Conditional Modus Ponens (CMP):
 $\not\vdash \phi \land (\phi \rightarrow \psi) \rightarrow \psi$.

In other words, on pain of Curry-driven triviality, one doesn’t get familiar ‘deduction theorem’ behavior even for one’s special ‘suitable conditional’. (Note standard case wrt K_3 and LP material conditional.)
Constraint on ‘Suitable’ Conditional

Let \(\rightarrow \) be the ‘suitable conditional’, however defined.

- Being *suitable*, \(\rightarrow \) satisfies Rule Modus Ponens (RMP):
 \[\phi, \phi \rightarrow \psi \vdash \psi. \]

- Curry paradox shows that \(\rightarrow \) cannot satisfy Conditional Modus Ponens (CMP):
 \[\not \vdash \phi \land (\phi \rightarrow \psi) \rightarrow \psi. \]

In other words, on pain of Curry-driven triviality, one doesn’t get familiar ‘deduction theorem’ behavior even for one’s special ‘suitable conditional’. (Note standard case wrt \(K_3 \) and \(LP \) material conditional.)
Let \rightarrow be the ‘suitable conditional’, however defined.

- Being *suitable*, \rightarrow satisfies Rule Modus Ponens (RMP):
 $\phi, \phi \rightarrow \psi \vdash \psi$.

- Curry paradox shows that \rightarrow cannot satisfy Conditional Modus Ponens (CMP): $\nvdash \phi \land (\phi \rightarrow \psi) \rightarrow \psi$.

In other words, on pain of Curry-driven triviality, one doesn’t get familiar ‘deduction theorem’ behavior even for one’s special ‘suitable conditional’. (Note standard case wrt K_3 and LP *material* conditional.)
Let \(\rightarrow \) be the ‘suitable conditional’, however defined.

- Being *suitable*, \(\rightarrow \) satisfies Rule Modus Ponens (RMP):
 \[\phi, \phi \rightarrow \psi \vdash \psi. \]

- Curry paradox shows that \(\rightarrow \) cannot satisfy Conditional Modus Ponens (CMP):
 \[\nabla \phi \land (\phi \rightarrow \psi) \rightarrow \psi. \]

In other words, on pain of Curry-driven triviality, one doesn’t get familiar ‘deduction theorem’ behavior even for one’s special ‘suitable conditional’. (Note standard case wrt \(K_3 \) and \(LP \) material conditional.)
Let \rightarrow be the ‘suitable conditional’, however defined.

- Being *suitable*, \rightarrow satisfies Rule Modus Ponens (RMP): $\phi, \phi \rightarrow \psi \vdash \psi$.

- Curry paradox shows that \rightarrow cannot satisfy Conditional Modus Ponens (CMP): $\nvdash \phi \land (\phi \rightarrow \psi) \rightarrow \psi$.

In other words, on pain of Curry-driven triviality, one doesn’t get familiar ‘deduction theorem’ behavior even for one’s special ‘suitable conditional’. (Note standard case wrt K_3 and LP *material* conditional.)
Let $Val(x, y)$ be our validity predicate, and assume that ‘truth-preservation’ is a conditional claim.

- We cannot have: $Val(\Box \phi \downarrow, \Box \psi \downarrow) \rightarrow (\phi \rightarrow \psi)$.
- Otherwise, RMP would imply CMP, and Curry would quickly trivialize the language.

This issue confronts both paracomplete and paraconsistent approaches. What to make of it remains somewhat of an open problem. We close by mentioning a few options.
Let $\text{Val}(x, y)$ be our validity predicate, and assume that ‘truth-preservation’ is a conditional claim.

- We cannot have: $\text{Val}(\lnot \phi \land \lnot \psi) \rightarrow (\phi \rightarrow \psi)$.
- Otherwise, RMP would imply CMP, and Curry would quickly trivialize the language.

This issue confronts both paracomplete and paraconsistent approaches. What to make of it remains somewhat of an open problem. We close by mentioning a few options.
Let $Val(x, y)$ be our validity predicate, and assume that ‘truth-preservation’ is a conditional claim.

- We cannot have: $Val(\neg \phi \neg, \neg \psi \neg) \rightarrow (\phi \rightarrow \psi)$.
- Otherwise, RMP would imply CMP, and Curry would quickly trivialize the language.

This issue confronts both paracomplete and paraconsistent approaches. What to make of it remains somewhat of an open problem. We close by mentioning a few options.
Let $\text{Val}(x, y)$ be our validity predicate, and assume that ‘truth-preservation’ is a conditional claim.

- We cannot have: $\text{Val}(\neg \phi, \neg \psi) \rightarrow (\phi \rightarrow \psi)$.
- Otherwise, RMP would imply CMP, and Curry would quickly trivialize the language.

This issue confronts both paracomplete and paraconsistent approaches. What to make of it remains somewhat of an open problem. We close by mentioning a few options.
Let $Val(x, y)$ be our validity predicate, and assume that ‘truth-preservation’ is a conditional claim.

- We cannot have: $Val(\neg\phi \land \neg\psi) \rightarrow (\phi \rightarrow \psi)$.
- Otherwise, RMP would imply CMP, and Curry would quickly trivialize the language.

This issue confronts both paracomplete and paraconsistent approaches. What to make of it remains somewhat of an open problem. We close by mentioning a few options.
Worth Exploring: Routes to Truth-Preservation

- One option may be to go the route of John Myhill (1975), and introduce a family of stratified conditionals that serve to express a family of validity relations and their respective truth-preservation.

- One option is to take *validity* as primitive, and just reject that all valid arguments are truth-preserving. (Field, 2006)

- For paraconsistentists: one can use ‘mixed conditionals’, and express truth-preservation via a material conditional. (Priest, Beall, unpublished.)
One option may be to go the route of John Myhill (1975), and introduce a family of stratified conditionals that serve to express a family of validity relations and their respective truth-preservation.

One option is to take \textit{validity} as primitive, and just reject that all valid arguments are truth-preserving. (Field, 2006)

For paraconsistentists: one can use ‘mixed conditionals’, and express truth-preservation via a material conditional. (Priest, Beall, unpublished.)
Worth Exploring: Routes to Truth-Preservation

- One option may be to go the route of John Myhill (1975), and introduce a family of stratified conditionals that serve to express a family of validity relations and their respective truth-preservation.

- One option is to take *validity* as primitive, and just reject that all valid arguments are truth-preserving. (Field, 2006)

- For paraconsistentists: one can use ‘mixed conditionals’, and express truth-preservation via a material conditional. (Priest, Beall, unpublished.)
One option may be to go the route of John Myhill (1975), and introduce a family of stratified conditionals that serve to express a family of validity relations and their respective truth-preservation.

One option is to take *validity* as primitive, and just reject that all valid arguments are truth-preserving. (Field, 2006)

For paraconsistentists: one can use ‘mixed conditionals’, and express truth-preservation via a material conditional. (Priest, Beall, unpublished.)
Semantic Truth
A Simple Classical Semantics

- Each sentence is assigned a semantic value (relative to a model, or condition under which the values obtains).
- Assuming the basic value is truth—induces a two-way exhaustive and complete partition of sentences as true or false.
- \(Tr \) expresses this.
A Simple Classical Semantics

- Each sentence is assigned a semantic value (relative to a model, or condition under which the values obtains).
- Assuming the basic value is truth—induces a two-way exhaustive and complete partition of sentences as true or false.
- Tr expresses this.
A Simple Classical Semantics

- Each sentence is assigned a semantic value (relative to a model, or condition under which the values obtains).
- Assuming the basic value is truth—induces a two-way exhaustive and complete partition of sentences as true or false.
- \(Tr \) expresses this.
Semantic Truth: The Big Choice

- Soundness of unrestricted CR and RR plus simple model-theoretic semantics is inconsistent.

- Basic Options:
 - Classical Restriction: Restrict Capture and Release, e.g. by modifying the semantics of Tr.
 - Contextualist: Modify implementation of classical semantics.

- Further options we will not have time to discuss.
 - Semantics from non-classical logic [recapitulates prior sections, with an eye towards semantics].
 - Radical change of semantic approach [e.g. revision theory—we will not discuss much].
Semantic Truth: The Big Choice

- Soundness of unrestricted CR and RR plus simple model-theoretic semantics is inconsistent.

- Basic Options:
 - Classical Restriction: Restrict Capture and Release, e.g. by modifying the semantics of Tr.
 - Contextualist: Modify implementation of classical semantics.

- Further options we will not have time to discuss.
 - Semantics from non-classical logic [recapitulates prior sections, with an eye towards semantics].
 - Radical change of semantic approach [e.g. revision theory—we will not discuss much].
Semantic Truth: The Big Choice

- Soundness of unrestricted CR and RR plus simple model-theoretic semantics is inconsistent.

- Basic Options:
 - Classical Restriction: Restrict Capture and Release, e.g. by modifying the semantics of Tr.
 - Contextualist: Modify implementation of classical semantics.

- Further options we will not have time to discuss.
 - Semantics from non-classical logic [recapitulates prior sections, with an eye towards semantics].
 - Radical change of semantic approach [e.g. revision theory—we will not discuss much].
Semantic Truth: The Big Choice

- Soundness of unrestricted CR and RR plus simple model-theoretic semantics is inconsistent.

- Basic Options:
 - Classical Restriction: Restrict Capture and Release, e.g. by modifying the semantics of Tr.
 - Contextualist: Modify implementation of classical semantics.

- Further options we will not have time to discuss.
 - Semantics from non-classical logic [recapitulates prior sections, with an eye towards semantics].
 - Radical change of semantic approach [e.g. revision theory—we will not discuss much].
Soundness of unrestricted CR and RR plus simple model-theoretic semantics is inconsistent.

Basic Options:
- Classical Restriction: Restrict Capture and Release, e.g. by modifying the semantics of Tr.
- Contextualist: Modify implementation of classical semantics.

Further options we will not have time to discuss.
- Semantics from non-classical logic [recapitulates prior sections, with an eye towards semantics].
- Radical change of semantic approach [e.g. revision theory—we will not discuss much].
Motivation from Paracompleteness

Both Classical Restriction and Contextualist options are motivated by paracompleteness considerations.

- Find some way to assign Liar sentences no semantic value, reflecting semantic indeterminacy.
- Find some way to restrict the range of application of Tr, reflecting semantic indeterminacy.
Both Classical Restriction and Contextualist options are motivated by paracompleteness considerations.

- Find some way to assign Liar sentences no semantic value, reflecting semantic indeterminacy.
- Find some way to restrict the range of application of Tr, reflecting semantic indeterminacy.
Motivation from Paracompleteness

Both Classical Restriction and Contextualist options are motivated by paracompleteness considerations.

- Find some way to assign Liar sentences no semantic value, reflecting semantic indeterminacy.
- Find some way to restrict the range of application of Tr, reflecting semantic indeterminacy.
Both Classical Restriction and Contextualist options are motivated by paracompleteness considerations.

- Find some way to assign Liar sentences no semantic value, reflecting semantic indeterminacy.
- Find some way to restrict the range of application of \(Tr \), reflecting semantic indeterminacy.
Assuming we keep a basically classical logic, we have modified forms of the Standard Desiderata:

- **D1^s**: Full and accurate reporting of semantic status of sentences using Tr.
- **D2^s**: Have sufficient Capture and Release.
- **D3^s**: Avoid revenge [will become crucial in a moment].
Assuming we keep a basically classical logic, we have modified forms of the Standard Desiderata:

D1s Full and accurate reporting of semantic status of sentences using Tr.

D2s Have sufficient Capture and Release.

D3s Avoid revenge [will become crucial in a moment].
Assuming we keep a basically classical logic, we have modified forms of the Standard Desiderata:

D1 Full and accurate reporting of semantic status of sentences using Tr.

D2 Have sufficient Capture and Release.

D3 Avoid revenge [will become crucial in a moment].
Assuming we keep a basically classical logic, we have modified forms of the Standard Desiderata:

D1\(^s\) Full and accurate reporting of semantic status of sentences using \(Tr \).

D2\(^s\) Have sufficient Capture and Release.

D3\(^s\) Avoid revenge [will become crucial in a moment].
Assuming we keep a basically classical logic, we have modified forms of the Standard Desiderata:

D1s Full and accurate reporting of semantic status of sentences using Tr.

D2s Have sufficient Capture and Release.

D3s Avoid revenge [will become crucial in a moment].
Classical Restriction
Further Motivation

- Develop paracomplete semantics of \(Tr \) in a broadly classical semantic setting.
- Identify restricted domain in which \(Tr \) is well-behaved, and in which Capture and Release hold.
Further Motivation

- Develop paracomplete semantics of \(Tr \) in a broadly classical semantic setting.

- Identify restricted domain in which \(Tr \) is well-behaved, and in which Capture and Release hold.
Further Motivation

- Develop paracomplete semantics of Tr in a broadly classical semantic setting.
- Identify restricted domain in which Tr is well-behaved, and in which Capture and Release hold.
Familiar Example: Closed-Off Kripke

For E the Kripke minimal fixed point, consider classical model $\langle \mathcal{M}, E \rangle$ (the ‘closed-off Kripke construction).

- Restricted Capture and Release:
 $\langle \mathcal{M}, E \rangle \models (Tr(\neg \phi) \vee Tr(\neg \neg \phi)) \rightarrow (Tr(\neg \phi) \leftrightarrow \phi)$.

- Indeterminacy: $D(\neg \phi) \leftrightarrow Tr(\neg \phi) \vee Tr(\neg \neg \phi)$.

- L has a value in the classical model, but is counted as indeterminate by the semantics of Tr.

- Weakens Tr-consistency. Have $\neg Tr(\neg L)$, $\neg Tr(\neg \neg L)$.

JC Beall and Michael Glanzberg

Truth and Paradox
Familiar Example: Closed-Off Kripke

For E the Kripke minimal fixed point, consider classical model $\langle M, E \rangle$ (the ‘closed-off Kripke construction').

- **Restricted Capture and Release:**
 $\langle M, E \rangle \models (\mathit{Tr}(\Box \neg \phi \Box) \lor \mathit{Tr}(\Box \neg \neg \phi \Box)) \rightarrow (\mathit{Tr}(\Box \phi \Box) \leftrightarrow \phi)$.

- **Indeterminacy:** $D(\Box \phi \Box) \leftrightarrow \mathit{Tr}(\Box \phi \Box) \lor \mathit{Tr}(\Box \neg \phi \Box)$.

- L has a value in the classical model, but is counted as indeterminate by the semantics of Tr.

- **Weakens Tr-consistency.** Have $\neg \mathit{Tr}(\Box L \Box)$, $\neg \mathit{Tr}(\Box \neg L \Box)$.
Familiar Example: Closed-Off Kripke

- For E the Kripke minimal fixed point, consider classical model $\langle M, E \rangle$ (the ‘closed-off Kripke construction).

- Restricted Capture and Release:
 $$\langle M, E \rangle \models (Tr(\neg \phi) \lor Tr(\neg \neg \phi)) \quad \rightarrow \quad (Tr(\neg \phi) \leftrightarrow \phi).$$

- Indeterminacy: $$D(\neg \phi) \leftrightarrow Tr(\neg \phi) \lor Tr(\neg \neg \phi).$$

- L has a value in the classical model, but is counted as indeterminate by the semantics of Tr.

- Weakens Tr-consistency. Have $\neg Tr(\neg L)$, $\neg Tr(\neg \neg L)$.
For E the Kripke minimal fixed point, consider classical model $\langle M, E \rangle$ (the ‘closed-off Kripke construction).

Restricted Capture and Release:
$$\langle M, E \rangle \models (Tr(\neg\phi) \lor Tr(\neg\neg\phi)) \rightarrow (Tr(\neg\phi) \leftrightarrow \phi).$$

Indeterminacy:
$$D(\neg\phi) \leftrightarrow Tr(\neg\phi) \lor Tr(\neg\neg\phi).$$

L has a value in the classical model, but is counted as indeterminate by the semantics of Tr.

Weakens Tr-consistency. Have $\neg Tr(\neg L)$, $\neg Tr(\neg\neg L)$.

JC Beall and Michael Glanzberg
Truth and Paradox
Familiar Example: Closed-Off Kripke

For E the Kripke minimal fixed point, consider classical model $\langle M, E \rangle$ (the ‘closed-off Kripke construction).

- **Restricted Capture and Release:**
 \[
 \langle M, E \rangle \models (Tr(\neg \phi) \lor Tr(\neg \neg \phi)) \rightarrow (Tr(\neg \phi) \leftrightarrow \phi).
 \]

- **Indeterminacy:**
 \[
 D(\neg \phi) \leftrightarrow Tr(\neg \phi) \lor Tr(\neg \neg \phi).
 \]

- L has a value in the classical model, but is counted as indeterminate by the semantics of Tr.

- **Weakens Tr-consistency.** Have $\neg Tr(\neg L), \neg Tr(\neg \neg L)$.
For E the Kripke minimal fixed point, consider classical model $\langle M, E \rangle$ (the ‘closed-off Kripke construction').

Restricted Capture and Release:

$\langle M, E \rangle \models (Tr(\neg \phi \land) \lor Tr(\neg \neg \phi \land)) \rightarrow (Tr(\neg \phi \land) \leftrightarrow \phi)$.

Indeterminacy: $D(\neg \phi \land) \leftrightarrow Tr(\neg \phi \land) \lor Tr(\neg \neg \phi \land)$.

L has a value in the classical model, but is counted as indeterminate by the semantics of Tr.

Weakens Tr-consistency. Have $\neg Tr(\neg L \land), \neg Tr(\neg \neg L \land)$.

JC Beall and Michael Glanzberg

Truth and Paradox
Major Issues

Success on D_1^s, D_3^s?
- Classical truth values not accurately reported by Tr.
- Cannot accurately express determinacy.
- Vulnerable to revenge.

Related approaches: e.g. truth via partially interpreted languages, distinguishing truth and definite truth (McGee).
Major Issues

- **Success on D1^s, D3^s?**
 - Classical truth values not accurately reported by *Tr*.
 - Cannot accurately express determinacy.
 - Vulnerable to revenge.

- Related approaches: e.g. truth via partially interpreted languages, distinguishing truth and definite truth (McGee).
Major Issues

- Success on $D1^s$, $D3^s$?
 - Classical truth values not accurately reported by Tr.
 - Cannot accurately express determinacy.
 - Vulnerable to revenge.

- Related approaches: e.g. truth via partially interpreted languages, distinguishing truth and definite truth (McGee).
Major Issues

- **Success on D_1^s, D_3^s?**
 - Classical truth values not accurately reported by Tr.
 - Cannot accurately express determinacy.
 - Vulnerable to revenge.

- Related approaches: e.g. truth via partially interpreted languages, distinguishing truth and definite truth (McGee).
Major Issues

- Success on $D1^s, D3^s$?
 - Classical truth values not accurately reported by Tr.
 - Cannot accurately express determinacy.
 - Vulnerable to revenge.

- Related approaches: e.g. truth via partially interpreted languages, distinguishing truth and definite truth (McGee).
Major Issues

- Success on $D1^s$, $D3^s$?
 - Classical truth values not accurately reported by Tr.
 - Cannot accurately express determinacy.
 - Vulnerable to revenge.

- Related approaches: e.g. truth via partially interpreted languages, distinguishing truth and definite truth (McGee).
Contextualist Approaches
Further Motivation: Indeterminacy Redux

Stronger indeterminacy idea: Liar sentences fail to have semantic values = G(rave) S(emantic) D(efect).

- Take Liar to prove that L is GSD.
- Tarski: GSD = not syntactically well-formed.
- Preferred analogy: failure to express a proposition (e.g. because of failed demonstrative reference).
Stronger indeterminacy idea: Liar sentences fail to have semantic values = $G(rave) \ S(emantic) \ D(efect)$.

- Take Liar to prove that L is GSD.
- Tarski: GSD = not syntactically well-formed.
- Preferred analogy: failure to express a proposition (e.g. because of failed demonstrative reference).
Stronger indeterminacy idea: Liar sentences fail to have semantic values = G(rave) S(emantic) D(efect).

- Take Liar to prove that L is GSD.
- Tarski: GSD = not syntactically well-formed.
- Preferred analogy: failure to express a proposition (e.g. because of failed demonstrative reference).
Stronger indeterminacy idea: Liar sentences fail to have semantic values = G(rave) S(ematic) D(efect).

- Take Liar to prove that L is GSD.
- Tarski: GSD = not syntactically well-formed.
- Preferred analogy: failure to express a proposition (e.g. because of failed demonstrative reference).
Further Motivation: Indeterminacy Redux

Stronger indeterminacy idea: Liar sentences fail to have semantic values = G(rave) S(emanic) D(efect).

- Take Liar to prove that L is GSD.
- Tarski: GSD = not syntactically well-formed.
- Preferred analogy: failure to express a proposition (e.g. because of failed demonstrative reference).
Further Motivation: Reflection

- The problem:
 1. Assign L GSD status in face of standard Liar reasoning.
 2. REFLECT on that assignment: observe that it entails L not being true.
 3. OBSERVE: the claim we make in reflection appears to be a perfectly non-defective and correct use of L.
 4. Conclude: that L is in fact true.

- Conclusion: GSD is not a *stable* status for Liar sentences.
Further Motivation: Reflection

The problem:

1. Assign L GSD status in face of standard Liar reasoning.
2. REFLECT on that assignment: observe that it entails L not being true.
3. OBSERVE: the claim we make in reflection appears to be a perfectly non-defective and correct use of L.
4. Conclude: that L is in fact true.

Conclusion: GSD is not a stable status for Liar sentences.
Further Motivation: Reflection

The problem:
1. Assign L GSD status in face of standard Liar reasoning.
2. REFLECT on that assignment: observe that it entails L not being true.
3. OBSERVE: the claim we make in reflection appears to be a perfectly non-defective and correct use of L.
4. Conclude: that L is in fact true.

Conclusion: GSD is not a stable status for Liar sentences.
Further Motivation: Reflection

The problem:
1. Assign \(L \) GSD status in face of standard Liar reasoning.
2. REFLECT on that assignment: observe that it entails \(L \) not being true.
3. OBSERVE: the claim we make in reflection appears to be a perfectly non-defective and correct use of \(L \).
4. Conclude: that \(L \) is in fact true.

Conclusion: GSD is not a stable status for Liar sentences.
Further Motivation: Reflection

The problem:
1. Assign \(L \) GSD status in face of standard Liar reasoning.
2. REFLECT on that assignment: observe that it entails \(L \) not being true.
3. OBSERVE: the claim we make in reflection appears to be a perfectly non-defective and correct use of \(L \).
4. Conclude: that \(L \) is in fact true.

Conclusion: GSD is not a *stable* status for Liar sentences.
Further Motivation: Reflection

The problem:
1. Assign L GSD status in face of standard Liar reasoning.
2. REFLECT on that assignment: observe that it entails L not being true.
3. OBSERVE: the claim we make in reflection appears to be a perfectly non-defective and correct use of L.
4. Conclude: that L is in fact true.

Conclusion: GSD is not a *stable* status for Liar sentences.
Reflection and Revenge

- Reflection as seen by Restriction views (and others):
 - Reflection as a revenge paradox, created by lack of expressive power in restricted theory of truth.

- Reflection as seen by Contextualist views:
 - Reflection as part of our ability to reason about semantic values, expressed using truth predicates.
 - As such, not so much a new paradox, as feature of semantic values to explain.
Reflection and Revenge

- Reflection as seen by Restriction views (and others):
 - Reflection as a revenge paradox, created by lack of expressive power in restricted theory of truth.

- Reflection as seen by Contextualist views:
 - Reflection as part of our ability to reason about semantic values, expressed using truth predicates.
 - As such, not so much a new paradox, as feature of semantic values to explain.
Reflection and Revenge

- Reflection as seen by Restriction views (and others):
 - Reflection as a revenge paradox, created by lack of expressive power in restricted theory of truth.

- Reflection as seen by Contextualist views:
 - Reflection as part of our ability to reason about semantic values, expressed using truth predicates.
 - As such, not so much a new paradox, as feature of semantic values to explain.
Reflection and Revenge

Reflection as seen by Restriction views (and others):
- Reflection as a revenge paradox, created by lack of expressive power in restricted theory of truth.

Reflection as seen by Contextualist views:
- Reflection as part of our ability to reason about semantic values, expressed using truth predicates.
- As such, not so much a new paradox, as feature of semantic values to explain.
The Contextualist Approach

- Embrace reflection, and so unstable semantic status for L.
- Appeal to context-dependence to explain this.
- Try to meet D_1^s–D_3^s.
 - Some success on D_3^s: no Strengthened Liar [but, questions about ‘super-Liars’].
 - Some success on D_2^s: Capture and Release when appropriate semantic values assigned, relative to context.
 - D_1^s in a hierarchical setting.

- Special questions:
 - Why is L context-dependent?
 - What change in context occurs in reflection?
The Contextualist Approach

- Embrace reflection, and so unstable semantic status for L.
- Appeal to context-dependence to explain this.
- Try to meet $D1^s$–$D3^s$.
 - Some success on $D3^s$: no Strengthened Liar [but, questions about ‘super-Liars’].
 - Some success on $D2^s$: Capture and Release when appropriate semantic values assigned, relative to context.
 - $D1^s$ in a hierarchical setting.

Special questions:
- Why is L context-dependent?
- What change in context occurs in reflection?
The Contextualist Approach

- Embrace reflection, and so unstable semantic status for L.
- Appeal to context-dependence to explain this.
- Try to meet D1s–D3s.
 - Some success on D3s: no Strengthened Liar [but, questions about ‘super-Liars’].
 - Some success on D2s: Capture and Release when appropriate semantic values assigned, relative to context.
 - D1s in a hierarchical setting.

Special questions:
- Why is L context-dependent?
- What change in context occurs in reflection?
The Contextualist Approach

- Embrace reflection, and so unstable semantic status for L.
- Appeal to context-dependence to explain this.
- Try to meet $D1^c$–$D3^c$.
 - Some success on $D3^c$: no Strengthened Liar [but, questions about ‘super-Liars’].
 - Some success on $D2^c$: Capture and Release when appropriate semantic values assigned, relative to context.
 - $D1^c$ in a hierarchical setting.

Special questions:
- Why is L context-dependent?
- What change in context occurs in reflection?
The Contextualist Approach

- Embrace reflection, and so unstable semantic status for \(L \).
- Appeal to context-dependence to explain this.
- Try to meet \(D_1^s \text{–} D_3^s \).
 - Some success on \(D_3^s \): no Strengthened Liar [but, questions about ‘super-Liars’].
 - Some success on \(D_2^s \): Capture and Release when appropriate semantic values assigned, relative to context.
 - \(D_1^s \) in a hierarchical setting.

Special questions:
- Why is \(L \) context-dependent?
- What change in context occurs in reflection?
Tarski-esque: contextual parameters on truth predicates (Burge, Simmons, etc).

- Less restrictive than Tarski (can import Kripke techniques).
- Hierarchical resolution of D1s.
 - Reflective conclusion: $Tr_{i+1}(\neg L \neg)$.
 - Reporting semantic status is from a different context = level in hierarchy.

Special questions:
- Is there really a parameter?
- What sets it? (Burge: Gricean process.)
Example: Contextual Parameters on Truth Predicates

Tarski-esque: contextual parameters on truth predicates (Burge, Simmons, etc).

- Less restrictive than Tarski (can import Kripke techniques).
- Hierarchical resolution of D^1_s.
 - Reflective conclusion: $Tr_{i+1}(\neg L_i \neg)$.
 - Reporting semantic status is from a different context = level in hierarchy.

- Special questions:
 - Is there really a parameter?
 - What sets it? (Burge: Gricean process.)
Example: Contextual Parameters on Truth Predicates

Tarski-esque: contextual parameters on truth predicates (Burge, Simmons, etc).

- Less restrictive than Tarski (can import Kripke techniques).
- Hierarchical resolution of $D1^s$.
 - Reflective conclusion: $Tr_{i+1}(\ulcorner L_i \urcorner)$.
 - Reporting semantic status is from a different context = level in hierarchy.

- Special questions:
 - Is there really a parameter?
 - What sets it? (Burge: Gricean process.)
Example: Contextual Parameters on Truth Predicates

Tarski-esque: contextual parameters on truth predicates (Burge, Simmons, etc).

- Less restrictive than Tarski (can import Kripke techniques).
- Hierarchical resolution of D^s_1.
 - Reflective conclusion: $Tr_{i+1}(\neg L_i \neg)$.
 - Reporting semantic status is from a different context = level in hierarchy.

- Special questions:
 - Is there really a parameter?
 - What sets it? (Burge: Gricean process.)
Example: Contextual Parameters on Truth Predicates

Tarski-esque: contextual parameters on truth predicates (Burge, Simmons, etc).

- Less restrictive than Tarski (can import Kripke techniques).
- Hierarchical resolution of $D1^s$.
 - Reflective conclusion: $Tr_{i+1}(\neg L_i \neg)$.
 - Reporting semantic status is from a different context = level in hierarchy.

- Special questions:
 - Is there really a parameter?
 - What sets it? (Burge: Gricean process.)
Example: Contextual Restrictions on Quantifier Domains

Less Tarski-esque (but still hierarchical): Contextual restrictions in quantifiers (Parsons, Glanzberg).

- Truth not predicates of sentences ‘bare’ in a context-dependent environment.

- To say that a sentence s is true in context c is to say that there is a proposition expressed by s in c, and that proposition is true.

- Domain of the propositional quantifier $\exists p$ may be context-dependent.
Example: Contextual Restrictions on Quantifier Domains

Less Tarski-esque (but still hierarchical): Contextual restrictions in quantifiers (Parsons, Glanzberg).

- Truth not predicates of sentences ‘bare’ in a context-dependent environment.
- To say that a sentence s is true in context c is to say that there is a proposition expressed by s in c, and that proposition is true.
- Domain of the propositional quantifier $\exists p$ may be context-dependent.
Example: Contextual Restrictions on Quantifier Domains

Less Tarski-esque (but still hierarchical): Contextual restrictions in quantifiers (Parsons, Glanzberg).

- Truth not predicates of sentences ‘bare’ in a context-dependent environment.

- To say that a sentence s is true in context c is to say that *there is* a proposition expressed by s in c, and that proposition is true.

- Domain of the propositional quantifier $\exists p$ may be context-dependent.
Example: Contextual Restrictions on Quantifier Domains

Less Tarski-esque (but still hierarchical): Contextual restrictions in quantifiers (Parsons, Glanzberg).

- Truth not predicates of sentences ‘bare’ in a context-dependent environment.

- To say that a sentence s is true in context c is to say that there is a proposition expressed by s in c, and that proposition is true.

- Domain of the propositional quantifier $\exists p$ may be context-dependent.
Example: Contextual Restrictions on Quantifier Domains

Less Tarski-esque (but still hierarchical): Contextual restrictions in quantifiers (Parsons, Glanzberg).

- Truth not predicates of sentences ‘bare’ in a context-dependent environment.

- To say that a sentence s is true in context c is to say that *there is* a proposition expressed by s in c, and that proposition is true.

- Domain of the propositional quantifier $\exists p$ may be context-dependent.
Reflection in the Domain Restriction Model

- Between the initial conclusion and the reflective one, the domain of the quantifier $\exists p$ must have expanded.

- Relative to the initial context, there is no proposition for the Liar sentence to express.

- But once the step of reflection is taken, there are more propositions available, including one which L can express in the new, expanded context.

- What proposition:
 - Reflective conclusion: L^c doesn’t express a proposition in c.
 - This claim expresses a proposition from a reflective context.
Between the initial conclusion and the reflective one, the domain of the quantifier $\exists p$ must have expanded.

Relative to the initial context, there is no proposition for the Liar sentence to express.

But once the step of reflection is taken, there are more propositions available, including one which L can express in the new, expanded context.

What proposition:
- Reflective conclusion: L^c doesn’t express a proposition in c.
- This claim expresses a proposition from a *reflective context*.
Reflection in the Domain Restriction Model

- Between the initial conclusion and the reflective one, the domain of the quantifier $\exists p$ must have expanded.

- Relative to the initial context, there is no proposition for the Liar sentence to express.

- But once the step of reflection is taken, there are more propositions available, including one which L can express in the new, expanded context.

- What proposition:
 - Reflective conclusion: L^c doesn’t express a proposition in c.
 - This claim expresses a proposition from a reflective context.
Between the initial conclusion and the reflective one, the domain of the quantifier $\exists p$ must have expanded.

Relative to the initial context, there is no proposition for the Liar sentence to express.

But once the step of reflection is taken, there are more propositions available, including one which L can express in the new, expanded context.

What proposition:
- Reflective conclusion: L^c doesn’t express a proposition in c.
- This claim expresses a proposition from a reflective context.
Reflection in the Domain Restriction Model

- Between the initial conclusion and the reflective one, the domain of the quantifier $\exists p$ must have expanded.

- Relative to the initial context, there is no proposition for the Liar sentence to express.

- But once the step of reflection is taken, there are more propositions available, including one which L can express in the new, expanded context.

- What proposition:
 - Reflective conclusion: L^c doesn’t express a proposition in c.
 - This claim expresses a proposition from a reflective context.
Between the initial conclusion and the reflective one, the domain of the quantifier $\exists p$ must have expanded.

Relative to the initial context, there is no proposition for the Liar sentence to express.

But once the step of reflection is taken, there are more propositions available, including one which L can express in the new, expanded context.

What proposition:
- Reflective conclusion: L^c doesn’t express a proposition in c.
- This claim expresses a proposition from a \textit{reflective context}.

JC Beall and Michael Glanzberg

Truth and Paradox
Major Issues

- Source and nature of context shift in reflective reasoning.
- Hierarchical aspects.
- Denial of absolutely unrestricted quantification.
Major Issues

- Source and nature of context shift in reflective reasoning.
- Hierarchical aspects.
- Denial of absolutely unrestricted quantification.
Major Issues

- Source and nature of context shift in reflective reasoning.
- Hierarchical aspects.
- Denial of absolutely unrestricted quantification.
Major Issues

- Source and nature of context shift in reflective reasoning.
- Hierarchical aspects.
- Denial of absolutely unrestricted quantification.
Discussion Time

Questions and comments most welcome...
Discussion Time

Questions and comments most welcome...