Algorithmic and High-Frequency Trading
A Primer on the Microstructure of Financial Markets

Julia Schmidt
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Overview

- Introduction
 - Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
 - Trading on an Informational Advantage
 - MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Market Microstructure
 — subfield of finance
 — “study of the process and outcome of exchanging assets under explicit trading rules” (O’Hara(1995))

Key Dimension of trading and pricing: Information

Price Efficiency
 — “market prices are an efficient way of transmitting the information required to arrive at a Pareto optimal allocation of resources” (Grossman&Stiglitz (1976))

Trading: many possible ways
 — focus on trading in large electronic markets
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Market Making

- Market participants
 - Market Maker (MM)
 - Liquidity Trader (LT)
- Market Maker
 - Competition
 - Provide liquidity → immediacy
 - Bid and ask prices → Limit Orders
- Liquidity Trader
 - Take liquidity
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
 Providing liquidity \rightarrow accept one side of trade \rightarrow hold assets until person with matching demand enters market \rightarrow risk of prices moving against MM \rightarrow Risk Premium/Liquidity Premium

Model
- n identical Market Makers
- three dates $t \in \{1, 2, 3\}$
- no uncertainty about arrival of matching orders

\[LT_1 \text{ wants to sell } i \text{ units of the asset} \]
\[LT_2 \text{ wants to buy } i \text{ units of the asset} \]
Beginning (t=0)

- W_0: initial cash amount
- MM: no assets
- LT_1: i units
- LT_2: -i units

- No trading or direct costs for holding inventory
Grossman-Miller Market Making Model

- S_t : cash value of asset in t
 \[S_3 = \mu + \epsilon_2 + \epsilon_3 \]
 - μ : constant
 - ϵ_2 and ϵ_3 : independent, $N(0, \sigma^2)$, random variables
 - ϵ_2 : announced between $t=1$ and $t=2$
 - ϵ_3 : announced between $t=2$ and $t=3$

LT_1 : sell i units

LT_2 : buy i units
Risk averse participants

- Expected utility: $E[U(X_3)]$ where $U(X) = -\exp(-\gamma X)$
- γ: utility penalty for taking risk \rightarrow risk aversion parameter

q_t^j: asset holdings at the end of period t

$j \in \{MM, LT1, LT2\}$

LT_1: sell i units

LT_2: buy i units
Grossman-Miller Market Making Model

- \(t=3 \)
 \[S_3 = \mu + \epsilon_2 + \epsilon_3 \]

- \(t=2 \)
 \[
 \max_{q_2^j} \mathbb{E}
 \left[
 U\left(X_3^j\right) \bigg| \epsilon_2 \right]
 \text{ s.t. } X_3^j = X_2^j + q_2^j S_3 \quad \text{and} \quad X_2^j + q_2^j S_2 = X_1^j + q_1^j S_2
 \]
 \[q_2^{j,*} = \frac{\mathbb{E}\left[S_3 \big| \epsilon_2 \right] - S_2}{\gamma \sigma^2} \quad \forall j \]
 equal demand and supply in \(t=2 \), i assets are held by MM & LT1, \(q_1^{LT2} = -i \)
 \[q_2^{j,*} = 0, \quad S_2 = \mu + \epsilon_2 \]

LT_1: sell \(i \) units
LT_2: buy \(i \) units
\(t=1 \) \((X_3 = X_2)\)

\[
\max_{q_1^j} \mathbb{E} \left[U(X_2^j) \right] \text{ s.t. } X_2^j = X_1^j + q_1^j S_1 \text{ and } X_1^j + q_1^j S_1 = X_0^j + q_0^j S_0
\]

\(q_1^{j,*} = \frac{\mathbb{E}[S_2] - S_1}{\gamma \sigma^2} \) for MMs and LT1

equal demand and supply in \(t=1 \) and \(q_0^{MM} = 0 \)

\(q_1^{j,*} = \frac{i}{n+1} \) and \(S_1 = \mu - \gamma \sigma^2 \frac{i}{n+1} \)
Grossman-Miller Market Making Model

- Influence Factors on Risk Premium
 - size of the liquidity demand $|i|$
 - amount of competition between MMs n
 - market risk aversion γ
 - volatility of the underlying asset σ^2

- $n \to \infty \Rightarrow$ Liquidity Premium goes to zero
 \Rightarrow Price converges to efficient level $S_1 = \mu$
 \Rightarrow LT1 net trade converges to liquidity need
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Model with participation costs c

- c : proxy for time and investments needed to keep a constant, active and competitive presence in the market + opportunity costs
- Result:
 - Level of competition decreases monotonically with supplier’s participation costs
 - Increase the liquidity premium
Model with trading cost η
- Depend on level of activity in the market (proportional to shares traded)
- Act like participation costs for liquidity traders (fees are known)
 → Relatively small trades are too expensive

$t=2$

$$q_{2}^{j,*} = \frac{\mathbb{E}[S_{3}-\eta | \epsilon_{2}]- (S_{2}-\eta)}{\gamma \sigma^{2}}$$ for LT1 & MM

$$q_{2}^{LT2,*} = \frac{\mathbb{E}[S_{3}+\eta | \epsilon_{2}]- (S_{2}+\eta)}{\gamma \sigma^{2}}$$

$$S_{2} = \mu + \epsilon_{2},$$
Trading Costs

\[t=1 \]

- LT1: any quantities he doesn’t sell now he has to sell later
 \[q_{1}^{LT1} = \frac{\mathbb{E}[S_{2} - \eta | \epsilon_{2}] - (S_{1} - \eta)}{\gamma \sigma^{2}} \]

- MM: whatever they buy they have to sell later
 \[q_{1}^{MM} = \frac{\mathbb{E}[S_{2} - \eta | \epsilon_{2}] - (S_{1} + \eta)}{\gamma \sigma^{2}} \]

- Equal demand and supply in \(t=1 \)
 \[S_{1} = \mu - \gamma \sigma^{2} \frac{i}{n+1} - 2 \frac{n}{n+1} \eta \]
 and
 \[q_{1}^{LT1,*} = \frac{i}{n+1} + 2 \frac{n}{n+1} \frac{\eta}{\gamma \sigma^{2}} \]

- Extra liquidity discount
- Almost all trading fees are paid by the LT initiating the transaction
- Increase in trading fees has smaller effect via competition but greater effect on immediacy and the liquidity discount than participation costs
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Transformation to electronic asset markets

- Trading does not take place at once and not to a single price
- LT post MO into exchange → meet LO of MM, which are resting in LOB
- Here:
 - LT1’s MO enters market and is executed against LO in LOB
 - Possibilities: one large order or many small orders
 - As execution price changes, so does LT1’s strategy and eventually, after selling \(i \frac{n}{n+1} \) shares, the price has moved too far and LT1 stops trading
 - Overall: execution at average price \(S_1 \)
 - Risk premium: \(S_1 - \text{midprice of first MO} \)
- Effect of traded quantity \rightarrow Rewrite S_1
 \[
 S_1 = \mu + \lambda q^{LT1}
 \]

- Grossman-Miller model:
 \[
 \lambda = -\frac{1}{n}\gamma \sigma^2 \text{ and } q^{LT1} = i \frac{n}{n+1}
 \]
 - λ : market price reaction to LT1’s total order (price impact)
 - Describes liquidity of the market for this asset
 - The more liquid, the lower the absolute lambda
Other way to measure liquidity: autocovariance in asset price changes (or returns)

Introduce new date $t=0$ and a random public event ϵ_1 announced between 0 and 1

- $S_3 = \mu + \epsilon_1 + \epsilon_2 + \epsilon_3$
- $\mu_0 = \mathbb{E}[S_3]$, $\mu_1 = \mathbb{E}[S_3|\epsilon_1]$, $\mu_2 = \mathbb{E}[S_3|\epsilon_1, \epsilon_2]$, $\mu_3 = S_3$
- $\epsilon_1, \epsilon_2, \epsilon_3$ i.i.d. $\sim N(0, \sigma^2)$
- Discrete process μ_t is a martingale, efficient price process
- No trades in $t=0 \Rightarrow S_0 = \mathbb{E}[S_3] = \mu_0$
- $S_1 = \mu + \lambda q^{LT_1}$, $S_2 = \mu_2$
- $\Delta_1 = S_1 - S_0$, $\Delta_2 = S_2 - S_1$
- $\text{Cov}[\Delta_1, \Delta_2] = -\lambda^2 \text{Var}[q^{LT_1}] < 0$

→ Autocovariance captures liquidity just like price impact does
→ $\lambda \to 0 \Rightarrow \text{Cov} \to 0 \Rightarrow$ price process converges to martingale process μ_t
Overview

- Introduction

- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders

- Trading on an Informational Advantage

- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Small risk-neutral trader with costless inventory management and infinite patience
- Other MMs do not react to our MMs decision
- Don’t know time and size of incoming MOs
- S_t: current value of asset, midprice
- Liquidates her inventory at midprice at no costs

- δ^\pm: depth, distance from mid price
- p^\pm: probability that an MO arrives
- P^\pm: cdf, probability that price walks to MM’s LO after arrival of MO
 $\Rightarrow p_P^-(\delta^-)$: prob that buy LO is filled
- Distribution of other LO’s: exponential with parameter $\kappa^\pm
 \Rightarrow p_P^-(\delta^-) = p^-e^{-\kappa^-\delta^-}$
\[\Pi: \text{MM's profit per trade} \]

\[
\max_{\delta^+, \delta^-} \mathbb{E}[\Pi (\delta^+, \delta^-)] = \max_{\delta^+, \delta^-} \{ p^+ e^{-\kappa^+ \delta^+} + p^- e^{-\kappa^- \delta^-} \}
\]

\[\rightarrow \delta^{\pm,*} = \frac{1}{\kappa^\pm} \]

- Given our parametric choice of \(P_{\pm} \), the optimal depth is equal to the mean depth in the LOB
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Trading on an Informational Advantage

- Market for an asset, opens only at one time point
- \(S \): trading price
- \(v \): future cash value after trading \(\sim N(\mu, \sigma^2) \)
- Traders:
 - Informed trader: knows exact value of \(v \)
 - Anonymous mass of price insensitive liquidity traders (LT)
 - Large number of MMs (observe and compete for order flow)
 - Risk neutral \(\rightarrow \) do not need a liquidity premium for taking risk
 - Liquidity premium from informational disadvantage (will be borne by LTs)
 - Know that there is one informed trader, don’t know who it is
- \(u \): net demand of LTs \(\sim N(0, \sigma_u^2) \) independent of \(v \)
- \(x(v) \): number of shares traded by the informed trader
- \(x(v) + u \): net order flow observed by MMs
Solution: Bayesian Nash equilibrium

- All agents optimize given the decisions of all other players according to their beliefs

\[S = \mathbb{E}[v|\mathcal{F}] \text{ where } \mathcal{F}: \text{all information available to MMs (semi-strong efficiency)} \]

\[S(x + u) = \mathbb{E}[v|x + u] \]

- Because of the normality of \(v \) and \(u \) insiders hypothesize

\[S(x + u) = \mu + \lambda(x + u) \]

- \(\lambda \): linear sensitivity of the market price to order flow

\[\max_x \mathbb{E}[x(v - S(x + u))] \rightarrow x^*(v) = \beta(v - \mu); \quad \beta = (2\lambda)^{-1} \]

\[S = \mathbb{E}[v|x + u] = \mu + \frac{2(x+u)}{\sigma} \sigma_u \rightarrow \text{premium } (\lambda = \frac{2\sigma_u}{\sigma}) \]
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Many informed traders, can only trade 1 unit
\[\Delta_a, \Delta_b : \text{ask- and bid-halfspreads} \rightarrow \text{spread} = \Delta_a + \Delta_b \]

MM chooses \(a = \mu + \Delta_a \) and \(b = \mu - \Delta_b \) \((\mu = \mathbb{E}[v|\mathcal{F}])\)

- Buy order comes in:
 - From uninformed LT \(\rightarrow \) expected profit \(a - \mu = \Delta_a \)
 - From informed Trader \(\rightarrow \) expected loss \(a - V_H = \Delta_a - (V_H - \mu) \)

- Expected profit of posting price \(a \):
 \[
 \frac{(1-\alpha)/2}{\alpha p + (1-\alpha)/2} \Delta_a + \frac{\alpha p}{\alpha p + \frac{1-\alpha}{2}} (\Delta_a - (V_H - \mu)) \overset{!}{=} 0
 \]

\[\rightarrow \Delta_a = \frac{1}{1 + \frac{1-\alpha}{\alpha} \frac{1/2}{p}} (V_H - \mu) \quad \Delta_b = \frac{1}{1 + \frac{1-\alpha}{\alpha} \frac{1/2}{1-p}} (\mu - V_L) \]
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
Incorporate time dimension, for simplicity: interest = zero

Determination of cash value at t=T

\(\mathcal{F}_t \): Public information in t

\(p_t = \mathbb{P}(v = V_H | \mathcal{F}_t), \quad \mu_t = \mathbb{E}[v | \mathcal{F}_t] \)

\[a_t = \mu_t + \Delta_{a,t} = \mu_t + \frac{1}{1 + \frac{1-\alpha}{\alpha} \frac{1}{p_t}} (V_H - \mu_t) \]

\[b_t = \mu_t + \Delta_{b,t} = \mu_t - \frac{1}{1 + \frac{1-\alpha}{\alpha} \frac{1}{1-p_t}} (\mu_t - V_L) \]

At every execution, the execution price is equal to the expectation of the underlying asset conditional on the history of order flow and also on the information in the execution (buy or sell) \(\Rightarrow \) realized price process is a martingale.
Overview

- Introduction
- Market Making
 - Grossman-Miller Market Making Model
 - Trading Costs
 - Measuring Liquidity
 - Market Making using Limit Orders
- Trading on an Informational Advantage
- MM with an Informational Disadvantage
 - Price Dynamics
 - Price Sensitive Liquidity Traders
- LTs avoid trading if the half-spread is too high
- LT_i gets a cash equivalent utility gain of c_i (urgency parameter) if he executes his desired trade \Rightarrow if $c_i < \Delta$ the trade won’t be executed
- $F(c) = \mathbb{P}(c_i < c)$

\[\Delta_a = \frac{1}{1 - F(\Delta_a)} \left(V_H - \mu \right) \]
\[\Delta_b = \frac{1}{1 - F(\Delta_b)} \left(\mu - V_L \right) \]

- MM increases halfspread \Rightarrow smaller population of LTs trades
- c_i small $\Rightarrow \Delta_a = V_H - \mu$ and $\Delta_b = \mu - V_L \equiv$ solution without LTs \Rightarrow market collapse
 \Rightarrow strong efficient price
Thank you 😊