Inhomogeneous Random Evolutions and Their Applications explains how to model various dynamical systems in finance and insurance with non-homogeneous in time characteristics. It includes modelling:

- Financial underlying and derivatives via Levy processes with time-dependent characteristics
- Limit order books in the algorithmic and HFT with counting price changes processes having time-dependent intensities
- Risk processes which counts number of claims with time-dependent conditional intensities
- Multi-asset price impact from distressed selling
- Regime-switching Levy-driven diffusion-based price dynamics

Initial models for those systems are very complicated, that is why our approach helps to simplified their study. We use very general approach for modelling of those systems via abstract inhomogeneous random evolutions in Banach spaces. To simplify their investigation, we apply first averaging principle (long-run stability property or law of large numbers (LLN)) to get some deterministic function on the long run. To eliminate the rate of convergence in the LLN, we use secondly the functional central limit theorem (FCLT) such that the associated cumulative process, centered about that deterministic function and suitably scaled in time, may be approximated by an orthogonal martingale measure, in general, and by standard Brownian motion, in particular, if the scale parameter increases. Thus, this approach allows us to easily link, for example, microscopic activities with macroscopic ones in HFT, connecting the parameters driving the HFT with the daily volatilities. This method also helps to easily calculate ruin and ultimate ruin probabilities for the risk process. All results in the book are new and original, and can be easily implemented in practice.