4.6.3.1 Generalized binomial model for stock prices: 122
4.6.3.2 Call option prices using one period generalized binomial models 122
4.6.4 The multi-period generalized binomial models and valuation of call options 126
4.6.4.1 Two-period generalized binomial models: 126
4.6.4.2 Multi-period generalized binomial models: 127

References 127

5 Random Evolutions as Random Dynamical Systems 129
5.1 Chapter Overview 129
5.2 Multiplicative Operator Functionals (MOF) 129
5.3 Random Evolutions 131
5.3.1 Definition and Classification of Random Evolutions 131
5.3.2 Some Examples of RE 133
5.3.3 Martingale Characterization of Random Evolutions. 135
5.3.4 Analogue of Dynkin’s formula for RE. 140
5.3.5 Boundary value problems for RE. 141
5.4 Limit Theorems for Random Evolutions. 142
5.4.1 Weak Convergence of Random Evolutions. 142
5.4.2 Averaging of Random Evolutions. 144
5.4.3 Diffusion Approximation of Random Evolutions 147
5.4.4 Averaging of Random Evolutions in Reducible Phase Space. Merged Random Evolutions. 149
5.4.5 Diffusion Approximation of random evolutions in Reducible Phase Space. 152
5.4.6 Normal Deviations of Random Evolutions. 155
5.4.7 Rates of Convergence in the Limit Theorems for RE. 156

References 159

6 Averaging of the Geometric Markov Renewal Processes (GMRP) 161
6.1 Chapter overview 161
6.2 Introduction 161
6.3 Markov renewal processes and Semi-Markov processes 162
6.4 The Geometric Markov Renewal Processes (GMRP) 163
6.4.1 Jump semi-Markov random evolutions. 163
6.4.2 Infinitesimal operators of the GMRP 164
6.4.3 Martingale property of the GMRP 166
6.5 Averaged geometric Markov renewal processes 166
6.5.1 Ergodic geometric Markov renewal processes. 167
6.5.1.1 Average scheme: 168
6.5.1.2 Martingale problem for the limit process \(\hat{S} \), in average scheme: 169
6.5.1.3 Weak convergence of the processes \(\hat{S}^T \) in an average scheme: 170
6.5.1.4 Characterization of the limiting measure Q for Q_T as $T \to \infty$ 171
6.6 Rates of convergence in ergodic averaging scheme 171
6.7 Merged geometric Markov renewal processes 172
6.8 Security markets and option prices using generalized binomial models induced by random maps 173
6.9 Applications 173
6.9.1 Two ergodic classes. 173
6.9.2 Algorithms of phase averaging with two ergodic classes. 174
6.9.3 Merging of S_T^0 in the case of two ergodic classes. 174
6.9.4 Examples for two states Ergodic GMRP 175
6.9.5 Examples for Merged GMRP 175
References 178

7 Diffusion Approximations of the GMRP and option price formulas 181
7.1 Chapter overview 181
7.2 Introduction 181
7.3 Diffusion Approximation of the geometric Markov renewal process (GMRP). 182
7.3.1 Ergodic Diffusion Approximation. 182
7.3.2 Merged Diffusion Approximation. 184
7.3.3 Diffusion Approximation under double averaging. 185
7.4 Proofs 185
7.4.1 Diffusion approximation (DA) 185
7.4.2 Martingale problem for the limiting problem $G_0(t)$ in DA 186
7.4.3 Weak convergence of the processes $G_T(t)$ in DA 188
7.4.4 Characterization of the limiting measure Q for Q_T as $T \to \infty$ in DA 188
7.4.5 Calculation of the quadratic variation for GMRP 189
7.4.6 Rates of convergence for GMRP 190
7.5 Merged diffusion geometric Markov renewal process in the Case of two Ergodic classes. 191
7.5.1 Two ergodic classes. 191
7.5.2 Algorithms of phase averaging with two ergodic classes. 191
7.5.3 Merged diffusion approximation in the case of two ergodic classes. 192
7.6 European call option pricing formulas for diffusion GMRP 192
7.6.1 Ergodic geometric Markov renewal process 192
7.6.2 Double averaged diffusion GMRP 193
7.6.3 European call option pricing formula for merged diffusion GMRP 194
7.7 Applications 194
7.7.1 Example of two state Ergodic Diffusion Approximation 194
7.7.2 Example of Merged Diffusion Approximation 196
8 Normal Deviation of a Security Market by the GMRP
 8.1 Chapter overview
 8.2 Normal deviations of the geometric Markov renewal processes
 8.2.1 Ergodic Normal Deviations
 8.2.2 Reducible (Merged) Normal Deviations
 8.2.3 Normal Deviations under double Averaging
 8.3 Applications
 8.3.1 Example of two state Ergodic normal deviated GMRP
 8.3.2 Example of Merged Normal Deviations in 2 classes
 8.4 European Call Option Pricing Formula for Normal Deviated GMRP
 8.4.1 Ergodic GMRP
 8.4.2 Double averaged Normal Deviated GMRP
 8.4.3 Call option pricing for ergodic GMRP
 8.4.4 Call option pricing formulas for Double averaged GMRP
 8.5 Martingale Property of GMRP
 8.6 Option Pricing Formulas for Stock Price Modelled by GMRP
 8.7 Examples of Option Pricing Formulas Modelled by GMRP
 8.7.1 Example of two states in discrete time
 8.7.2 Generalized example in continuous time in Poisson case

9 Poisson Approximation of a Security Market by the Geometric
Markov Renewal Processes
 9.1 Chapter overview
 9.2 Averaging in Poisson Scheme
 9.3 Option pricing formula under Poisson scheme
 9.4 Application of Poisson approximation with a finite number of jump
 values
 9.4.1 Applications in Finance
 9.4.1.1 Risk Neutral Measure
 9.4.1.2 On market incompleteness
 9.4.2 Example

References

10 Stochastic Stability of Fractional RDS in Finance
 10.1 Chapter Overview
 10.2 Fractional Brownian Motion as An Integrator
 10.3 Stochastic Stability of a Fractional \((B,S)\)-Security Market in
 Stratonovich Scheme
 10.3.1 Definition of Fractional Brownian Market in Stratonovich
 Scheme

References
10.3.2 Stability Almost Sure, in Mean and Mean Square of Fractional Brownian Markets without Jumps in Stratonovich Scheme
10.3.3 Stability Almost Sure, in Mean and Mean-Square of Fractional Brownian Markets with Jumps in Stratonovich Scheme

10.4 Stochastic Stability of Fractional \((B,S)\)-Security market in Hu & Oksendal Scheme
10.4.1 Definition of Fractional Brownian Market in Hu & Oksendal Scheme
10.4.2 Stability Almost Sure, in Mean and Mean Square of Fractional Brownian Markets without Jumps in Hu & Oksendal Scheme
10.4.3 Stability Almost Sure, in Mean and Mean Square of Fractional Brownian Markets with Jumps in Hu & Oksendal Scheme

10.5 Stochastic Stability of Fractional \((B,S)\)-Security Market in Elliott & van der Hoek Scheme
10.5.1 Definition of Fractional Brownian Market in Elliott & van der Hoek Scheme
10.5.2 Stability Almost Sure, in Mean and Mean Square of Fractional Brownian Markets without Jumps in Elliott & van der Hoek Scheme
10.5.3 Stability Almost Sure, in Mean and Mean Square of Fractional Brownian Markets with Jumps in Elliott & van der Hoek Scheme

10.6 Appendix
10.6.1 Definitions of Lyapunov Indeces and Stability
10.6.2 Asymptotic Property of Fractional Brownian Motion

References

11 Stability of RDS with Jumps in Interest Rate Theory
11.1 Chapter Overview
11.2 Introduction
11.3 Definition of the Stochastic Stability
11.4 The Stability of the Black-Scholes Model
11.5 A Model of \((B,S)\)-Securities Market with Jumps
11.6 Vasicek Model for the Interest Rate
11.7 The Vasicek Model of the Interest Rate with Jumps
11.8 Cox-Ingersoll-Ross Interest Rate Model
11.9 Cox-Ingersoll-Ross Model with Random Jumps
11.10 A Generalized Interest Rate Model
11.11 A Generalized Model with Random Jumps

References
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Stability of Delayed RDS with Jumps and Regime-switching in Finance</td>
<td>269</td>
</tr>
<tr>
<td>12.1</td>
<td>Chapter Overview</td>
<td>269</td>
</tr>
<tr>
<td>12.2</td>
<td>Stochastic Differential Delay Equations with Poisson Bifurcations</td>
<td>269</td>
</tr>
<tr>
<td>12.3</td>
<td>Stability Theorems</td>
<td>270</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Stability of Delayed Equations with Linear Poisson Jumps and Markovian Switchings</td>
<td>271</td>
</tr>
<tr>
<td>12.4</td>
<td>Application in Finance</td>
<td>274</td>
</tr>
<tr>
<td>12.5</td>
<td>Examples</td>
<td>275</td>
</tr>
<tr>
<td>References</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Optimal Control of Delayed RDS with Applications in Economics</td>
<td>281</td>
</tr>
<tr>
<td>13.1</td>
<td>Chapter Overview</td>
<td>281</td>
</tr>
<tr>
<td>13.2</td>
<td>Introduction</td>
<td>281</td>
</tr>
<tr>
<td>13.3</td>
<td>Controlled Stochastic Differential Delay Equations</td>
<td>282</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Assumptions and existence of solutions</td>
<td>282</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Weak infinitesimal operator of Markov process ((x_t,x(i)))</td>
<td>283</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Dynkin formula for SDDEs</td>
<td>284</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Solution of Dirichlet-Poisson problem for SDDEs</td>
<td>285</td>
</tr>
<tr>
<td>13.3.5</td>
<td>Statement of the Problem</td>
<td>285</td>
</tr>
<tr>
<td>13.4</td>
<td>Hamilton-Jacobi-Bellman Equation for SDDEs</td>
<td>285</td>
</tr>
<tr>
<td>13.5</td>
<td>Economics Model and Its Optimization</td>
<td>289</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Description of the model</td>
<td>289</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Optimization calculation</td>
<td>290</td>
</tr>
<tr>
<td>References</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Optimal Control of Vector Delayed RDS with Applications in Finance and Economics</td>
<td>293</td>
</tr>
<tr>
<td>14.1</td>
<td>Chapter Overview</td>
<td>293</td>
</tr>
<tr>
<td>14.2</td>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>14.3</td>
<td>Preliminaries and Formulation of the Problem</td>
<td>294</td>
</tr>
<tr>
<td>14.4</td>
<td>Controlled Stochastic Differential Delay Equations</td>
<td>295</td>
</tr>
<tr>
<td>14.5</td>
<td>Examples: Optimal Selection Portfolio and Ramsey Model</td>
<td>304</td>
</tr>
<tr>
<td>14.5.1</td>
<td>An Optimal Portfolio Selection Problem</td>
<td>304</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Stochastic Ramsey Model in Economics</td>
<td>306</td>
</tr>
<tr>
<td>References</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>RDS in Option Pricing Theory with Delayed/Path-dependent Information</td>
<td>309</td>
</tr>
<tr>
<td>15.1</td>
<td>Chapter Overview</td>
<td>309</td>
</tr>
<tr>
<td>15.2</td>
<td>Introduction</td>
<td>309</td>
</tr>
<tr>
<td>15.3</td>
<td>Stochastic Delay Differential Equations</td>
<td>312</td>
</tr>
<tr>
<td>15.4</td>
<td>General Formulation</td>
<td>313</td>
</tr>
<tr>
<td>15.5</td>
<td>A Simplified Problem</td>
<td>315</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Continuous Time Version of GARCH Model</td>
<td>317</td>
</tr>
</tbody>
</table>