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Classical Heston Model

The Heston model is one of the most popular stochastic volatility
models in the industry, as semi-closed formulas for vanilla option
prices are available, few (five) parameters need to be calibrated,
and it accounts for the mean-reverting feature of the volatility:{

dSt = rStdt+
√
VtStdW

Q
t

dVt = [γ(θ2 − Vt)]dt+ δ
√
VtdW

Q
t ,

where St is a stock price, Vt is the stochastic variance, W
Q
t is the

Wiener process with respect to the the risk-neutral probability Q
and r is the interest rate.



Delayed Heston Model

• Motivation: to include past history (a.k.a. delay) of the vari-
ance (over some delayed time interval [t− τ, t])

• Advantage: Improvement of the Volatility Surface Fitting (44%

reduction of the calibration error) compare with Classical Heston
model

• Goal: to price and hedge volatility swaps



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

We’d like to take into account not only its current state (as it is
the case in the Heston model) but also its past history over some
interval [t− τ , t], where τ is a positive constant and is called the
delay. Namely, at each time t, the immediate future volatility at
time t+ ε will not only depend on its value at time t but also on
all its history over [t− τ , t].



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Namely, at each time t, the immediate future volatility at time
t + ε will not only depend on its value at time t but also on all
its history over [t − τ , t]. Starting from the well-known discrete-
time GARCH(1,1) model, a continuous-time GARCH variance
diffusion incorporating delay (let’s refer to it as ’delayed vol’)
was introduced in a paper Sw. (2005). Unfortunately, the lat-
ter model doesn’t lead to (semi-)closed formulas for the vanilla
options, making it difficult to use for practitioners willing to cali-
brate on vanilla market prices (which can be a serious drawback).



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Nevertheless, one can notice that the Heston model and ’delayed
vol’ are very similar in the sense that the expected values of the
variances are the same - when we make the delay tends to 0
in ’delayed vol’. As mentioned before, the Heston framework
is very convenient for practitioners, and therefore it is naturally
tempting to adjust the Heston dynamics in order to incorporate
- in some way - the delay introduced in ’delayed vol’.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

We considered in a first approach adjusting the Heston drift by
a deterministic function of time so that the expected value of
the variance under our new delayed Heston model is equal to
the one under ’delayed vol’. Our approach can therefore be seen
as a variance 1st moment correction of the Heston model, in
order to account for the delay. It is important to note that our
model is a generalization of the classical Heston model (the latter
corresponding to the zero delay case τ = 0 of our model).



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

We performed numerical tests to validate our approach. With
recent market data (Sept. 30th 2011, underlying EURUSD),
we performed the model calibration on the whole market vanilla
option price surface (14 maturities from 1M to 10Y, 5 strikes
ATM, 25 Delta Call/Put, 10 Delta Call/Put). The results show
a significant (44%) reduction of the average absolute calibration
error compared to the Heston model (i.e. average of the absolute
differences between market and model prices).



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Further, we considered variance and volatility swaps hedging and
pricing in our delayed Heston framework. These contracts are
widely used in the financial industry and therefore it is relevant to
know their price processes (how much they worth at each time
t) and how we can hedge a position on them, i.e. theoretically
cancel the risk inherent to holding one unit of them.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Using the fact that every continuous local martingale can be
represented as a time-changed Brownian motion, as well as the
Brockhaus & Long approximation (that allows to approximate
the expected value of the square-root of an almost surely non
negative random variable using a 2nd order Taylor expansion
approach), we were able to derive closed formulas for variance
and volatility swaps price processes.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

In addition, as variance swaps are relatively liquid instruments
in the market (i.e. they can be easily bought and sold), we
considered the question of hedging a position on a volatility swap
using variance swaps in our framework.

We were able to derive a closed formula for the dynamic hedge
ratio, i.e. the number of units of variance swaps to hold at each
time in order to hedge a position on a volatility swap.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

• Motivation: past history of the varinace in its diffusion (over
some delayed time interval [t− τ , t])

• Non-Markov continuous-time GARCH model (Sw. (2005))

dVt

dt
= γ(θ2 − Vt) + α

[
1

τ
(
∫ t
t−τ

√
VsdZ

Q
s − (µ− r)τ)2 − Vt

]
•  dVt = [γ(θ2 − Vt) + ετ(t)]dt+ δ

√
VtdW

Q
t

ετ(t) := α
[
τ(µ− r)2 + 1

τ

∫ t
t−τ E

Q(Vs)ds− EQ(Vt)
]
.

We note, that limτ→0 supt∈R+
|ετ(t)| = 0.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Calibration Results

• Semi-closed formulas available for call options

• September 30th 2011 for underlying EURUSD on the whole
volatility surface (14 maturities from 1M to 10Y, 5 strikes: ATM,
25D call/put, 10D call/put)

• 44% reduction of the average absolute calibration error: 46bp
for delayed Heston, 81bp for Heston



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Variance & Volatility Swaps Pricing

• Realized variance: VR := 1
T

∫ T
0 Vsds

• Kvar = EQ[VR], Kvol = EQ[
√
VR]

• Brockhaus & Long approximation: E[
√
Z] ≈

√
E[Z]− V ar[Z]

8E[Z]3/2



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Variance & Volatility Swaps Pricing

• Using time-changed Brownian motion representation for con-
tinuous local martingales, we get closed formula for VarSwap
and VolSwap fair strikes

• xt := −(V0 − θ2
τ )eγ−γτ t + eγt(Vt − θ2

τ )

• dxt = f(t, xt)dW
Q
t , xt = ŴTt, Tt =< x >t=

∫ t
0 f

2(s, xs)ds



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Variance & Volatility Swaps Pricing

• θ2
τ := θ2 + ατ(µ−r)2

γ , γτ := α+ γ + α
γττ

(1− eγττ)

• Vt = θ2
τ + (V0 − θ2

τ )e−γτ t + e−γtŴTt = EQ[Vt] + e−γtŴTt

The parameter θ2
τ can be interpreted as the delayed-adjusted

long-range variance. We note, that θ2
τ → θ2 as τ → 0.

The parameter γτ can be interpreted as the delayed-adjusted
mean-reverting speed. We note, that γτ → γ as τ → 0.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Volatility Swap Hedging

• Price Processes:

• VarSwap: Xt(T ) := E
Q
t [VR],

• VolSwap: Yt(T ) := E
Q
t [
√
VR],

• VR := 1
T

∫ T
0 Vsds



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

• Portfolio containing 1 VolSwap and βt VarSwaps:

Πt = e−r(T−t)[Yt(T )−Kvol + βt(Xt(T )−Kvar)]

• If It :=
∫ t
0 Vsds is the accumulated varinace at time t, then:

Xt(T ) = E
Q
t [ItT + 1

T

∫ T
t Vsds] := g(t, It, Vt)

Yt(T ) = E
Q
t [
√
It
T + 1

T

∫ T
t Vsds] := h(t, It, Vt)



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Volatility Swap Hedging

• We compute the infinitesimal variations (using the fact that
Xt(T ) and Yt(T ) are martingales):

dXt(T ) = ∂g
∂Vt
δ
√
VtdW

Q
t

dYt(T ) = ∂h
∂Vt
δ
√
VtdW

Q
t

dΠt = rΠtdt+ e−r(T−t)[ ∂h∂Vt + βt
∂g
∂Vt

]δ
√
VtdW

Q
t

⇒

βt = −
∂h
∂Vt
∂g
∂Vt

= −
∂Yt(T )
∂Vt

∂Xt(T )
∂Vt

-hedge ratio



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Numerical Results)

We take the parameters that have been calibrated above (vanilla
options on September 30th 2011 for underlying EURUSD, matu-
rities from 1M to 10Y, strikes ATM, 25D Put/Call, 10D Put/Call),
namely

(v0, γ, θ
2, δ, c, α, τ)=(0.0343,3.9037,10−8,0.808,−0.5057,71.35,0.7821).

We plot the naive Volatility Swap strike
√
Kvar and the adjusted

Volatility Swap strike
√
Kvar − V arQ(VR)

8K
3
2
var

along the maturity di-

mension, as well as the convexity adjustment V arQ(VR)

8K
3
2
var

:



Naive VolSwap vs. Adjusted VolSwap Strikes



Convexity Adjustment



Initial Hedge ratio β0(T )



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps

These results had been obtained together with my PhD student
Nelson Vadori and have been submitted to Wilmott J. as two
papers:

1. ’Delayed Heston Model: Improvement of the Volatility Surface
Fitting’

2. ’Pricing and Hedging of Volatility Swap in the Delayed Heston
Model: Part 2’
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