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Introduction: Motivation I

The Hawkes process (Hawkes (1971)) is a simple point process
that has self-exciting property, clustering effect and long memory.

It has been widely applied in seismology, neuroscience, DNA
modelling and many other fields, including finance (Embrechts
et al. (2011)) and insurance (Stabile et al. (2010)).



Introduction: Motivation II

In this talk, we introduce a new model for the risk process, based
on general compound Hawkes process (GCHP) for the arrival of
claims. We call it risk model based on general compound Hawkes
process. To the best of the author’s knowledge, this risk model is
the most general relaying on the existing literature. Compound
Hawkes process and risk model based on it was introduced in
Stabile et al. (2010).

In comparison to simple Poisson arrival of claims, GCHP model
accounts for the risk of contagion and clustering of claims.



Introduction: Motivation III

We note, that Stabile & Torrisi (2010) were the first who re-
placed Poisson process by a simple Hawkes process in studying
the classical problem of the probability of ruin. Dassios and
Zhao (2011) considered the same ruin problem using marked
mutually-exciting process (dynamic contagion process).

Jang & Dassios (2012) implement Dassios & Zhao (2011) to cal-
culate insurance premiums and suggest higher premiums should
be set up in general across different insurance product lines.



Introduction: Motivation III

Semi-Markov risk processes and their optimal control and stabil-
ity were first introduced in Swishchuk & Goncharova (1998) and
studied and developed in Swishchuk (2000).

Compound Hawkes processes were applied to Limit Order Books
in Swishchuk, Chavez-Casillas, Elliott and Remillard (2017). Gen-
eral compound Hawkes processes have also been applied to LOB
in Swishchuk (2017).



Hawkes Process: Counting Process I

Definition 1 (Counting Process). A counting process is a
stochastic process N(t), t ≥ 0, taking positive integer values and
satisfying: N(0) = 0. It is almost surely finite, and is a right-
continuous step function with increments of size +1.

Denote by FN(t), t ≥ 0, the history of the arrivals up to time t,
that is, {FN(t), t ≥ 0}, is a filtration, (an increasing sequence of
σ-algebras).



Hawkes Process: Counting Process II

A counting process N(t) can be interpreted as a cumulative count
of the number of arrivals into a system up to the current time t.

The counting process can also be characterized by the sequence
of random arrival times (T1, T2, ...) at which the counting process
N(t) has jumped. The process defined by these arrival times is
called a point process.



Hawkes Process: Point Process and Conditional Intensity
Function

Definition 2 (Point Process). If a sequence of random vari-
ables (T1, T2, ...), taking values in [0,+∞), has P (0 ≤ T1 ≤ T2 ≤
...) = 1, and the number of points in a bounded region is almost
surely finite, then, (T1, T2, ...) is called a point process.

Definition 3 (Conditional Intensity Function). Consider a
counting process N(t) with associated histories FN(t), t ≥ 0. If a
non-negative function λ(t) exists such that

λ(t) = lim
h→0

E[N(t+ h)−N(t)|FN(t)]

h
, (1)

then it is called the conditional intensity function of N(t). We
note, that sometimes this function is called the hazard function.



Hawkes Process: Definition I

Definition 4 (One-dimensional Hawkes Process). The one-
dimensional Hawkes process is a point point process N(t) which
is characterized by its intensity λ(t) with respect to its natural
filtration:

λ(t) = λ+
∫ t

0
µ(t− s)dN(s), (2)

where λ > 0, and the response function µ(t) is a positive function
and satisfies

∫ +∞
0 µ(s)ds < 1.



Hawkes Process: Definition II

The constant λ is called the background intensity and the func-
tion µ(t) is sometimes also called the excitation function. We
suppose that µ(t) 6= 0 to avoid the trivial case, which is, a
homogeneous Poisson process. Thus, the Hawkes process is a
non-Markovian extension of the Poisson process.



Hawkes Process: Definition III

The interpretation of equation (2) is that the events occur ac-
cording to an intensity with a background intensity λ which in-
creases by µ(0) at each new event then decays back to the back-
ground intensity value according to the function µ(t). Choosing
µ(0) > 0 leads to a jolt in the intensity at each new event, and
this feature is often called a self-exciting feature, in other words,
because an arrival causes the conditional intensity function λ(t)

in (1)-(2) to increase then the process is said to be self-exciting.



Hawkes Process: Definition IV

With respect to definitions of λ(t) in (1) and N(t) (2), it follows
that

P (N(t+ h)−N(t) = m|FN(t)) =


λ(t)h+ o(h), m = 1

o(h), m > 1
1− λ(t)h+ o(h), m = 0.



Hawkes Process: Definition V

We should mention that the conditional intensity function λ(t)

in (1)-(2) can be associated with the compensator Λ(t) of the
counting process N(t), that is:

Λ(t) =
∫ t

0
λ(s)ds. (3)

Thus, Λ(t) is the unique FN(t), t ≥ 0, predictable function, with
Λ(0) = 0, and is non-decreasing, such that

N(t) = M(t) + Λ(t) a.s.,

where M(t) is an FN(t), t ≥ 0, local martingale (This is the
Doob-Meyer decomposition of N.)



Hawkes Process: Definition VI

A common choice for the function µ(t) in (2) is one of exponen-
tial decay:

µ(t) = αe−βt, (4)

with parameters α, β > 0. In this case the Hawkes process is
called the Hawkes process with exponentially decaying intensity.

Thus, the equation (2) becomes

λ(t) = λ+
∫ t

0
αe−β(t−s)dN(s), (5)

We note, that in the case of (4), the process (N(t), λ(t)) is a
continuous-time Markov process, which is not the case for the
choice (2).



Hawkes Process: Definition VII

With some initial condition λ(0) = λ0, the conditional density
λ(t) in (5) with the exponential decay in (4) satisfies the SDE

dλ(t) = β(λ− λ(t))dt+ αdN(t), t ≥ 0,

which can be solved (using stochastic calculus) as

λ(t) = e−βt(λ0 − λ) + λ+
∫ t

0
αe−β(t−s)dN(s),

which is an extension of (5).



Hawkes Process: Definition VIII

Another choice for µ(t) is a power law function:

λ(t) = λ+
∫ t

0

k

(c+ (t− s))p
dN(s) (6)

for some positive parameters c, k, p.

This power law form for λ(t) in (6) was applied in the geolog-
ical model called Omori’s law, and used to predict the rate of
aftershocks caused by an earthquake.



Hawkes Process: Some Generalization

Many generalizations of Hawkes processes have been proposed.

They include, in particular, multi-dimensional Hawkes processes,
non-linear Hawkes processes, mixed diffusion-Hawkes models,
Hawkes models with shot noise exogenous events, Hawkes pro-
cesses with generation dependent kernels.



General Compound Hawkes Process (GCHP)

Definition 7 (General Compound Hawkes Process (GCHP)).
Let N(t) be any one-dimensional Hawkes process defined above.
Let also Xn be ergodic continuous-time finite (or possibly in-
finite but countable) state Markov chain, independent of N(t),

with space state X, and a(x) be any bounded and continuous
function on X. The general compound Hawkes process is de-
fined as

St = S0 +
N(t)∑
k=1

a(Xk). (7)



General Compound Hawkes Process (GCHP): Some Ex-
amples

1. Compound Poisson Process: St = S0 +
∑N(t)
k=1 Xk, where N(t)

is a Poisson process and a(Xk) = Xk are i.i.d.r.v.

2. Compound Hawkes Process: St = S0 +
∑N(t)
k=1 Xk, where N(t)

is a Hawkes process and a(Xk) = Xk are i.i.d.r.v.

3. Compound Markov Renewal Process: St = S0 +
∑N(t)
k=1 a(Xk),

where N(t) is a renewal process and Xk is a Markov chain.



Risk Model based on General Compound Hawkes Process
(RMGCHP) I

Definition 8 (RMGCHP). We define the risk model R(t) based
on GCHP as follows:

R(t) := u+ ct−
N(t)∑
k=1

a(Xk), (8)

where u is the initial capital of an insurance company, c is the
rate of at which premium is paid, Xk is continuous-time Markov
chain in state space X = {1,2, ..., n}, N(t) is a Hawkes process,
a(x) is continuous and bounded function on X). N(t) and Xk are
independent.



Risk Model based on General Compound Hawkes Process
(RMGCHP): Some Examples

1. Classical Risk Process (Cramer-Lundberg Risk Model): If
a(Xk) = Xk are i.i.d.r.v. and N(t) is a homogeneous Poisson
process, then R(t) is a classical risk process also known as the
Cramer-Lundberg risk model (see Asmussen (2000) or Asmussen
and Albrecher (2010)). In the latter case we have compound
Poisson process (CPP) for the outgoing claims.

Remark. Using this analogy, we call our risk process as a risk
model based on general compound Hawkes process (GCHP).

2. Risk Model based on Compound Hawkes Process: If a(Xk) =
Xk are i.i.d.r.v. and N(t) is a Hawkes process, then R(t) is a risk
process with non-stationary Hawkes claims arrival introduced in
Stabile et al. (2010).



Law of Large Numbers (LLN) for RMGCHP

Theorem 1 (LLN for RMGCHP). Let R(t) be the risk model
(RMGCHP) defined above in (8), and Xk be an ergodic Markov
chain with stationary probabilities π∗n. Then

lim
t→+∞

R(t)

t
= c− a∗

λ

1− µ̂
,

where a∗ =
∑
k∈X a(k)π∗k, and 0 < µ̂ :=

∫ +∞
0 µ(s)ds < 1.

Proof. Follows from Swishchuk (2017) (’General Compound
Hawkes Processes in Limit Order Books’, working paper).

Remark 1. When a(Xk) = Xk are i.i.d.r.v., then a∗ = EXk.

Remark 2. When µ(t) = αe−βt is exponential, then µ̂ = α/β.



Functional Central Limit Theorem (FCLT) for RMGCHP I

Theorem 2 (FCLT for RMGCHP). Let R(t) be the risk model
(RMGCHP) defined above in (8), and Xk be an ergodic Markov
chain with stationary probabilities π∗n. Then

lim
t→+∞

R(t)− (ct− a∗N(t))√
t

=D σΦ(0,1),

or, in Skorokhod topology ( see Skorokhod (1965))

lim
n→+∞

R(nt)− (cnt− a∗N(nt))
√
n

= σW (t),

where Φ(·, ·) is the standard normal random variable, W (t) is a
standard Wiener process,



Functional Central Limit Theorem (FCLT) for RMGCHP
II

σ := σ∗
√
λ/(1− µ̂),

(σ∗)2 :=
∑
i∈X π

∗
i v(i),

0 < µ̂ :=
∫ +∞
0 µ(s)ds < 1,

v(i) = b(i)2

+
∑
j∈X(g(j)− g(i))2P (i, j)− 2b(i)

∑
j∈S(g(j)− g(i))P (i, j),

b = (b(1), b(2), ..., b(n))′,
b(i) : = a(i)− a∗,
g : = (P + Π∗ − I)−1b,
a∗ :=

∑
i∈X π

∗
i a(i),

P is a transition probability matrix for Xk,, i.e., P (i, j) = P (Xk+1 =
j|Xk = i), Π∗ denotes the matrix of stationary distributions of
P and g(j) is the jth entry of g. Proof follows from Swishchuk
(2017) ’General Compound Hawkes Processes in Limit Order
Books’ (available on arXiv: https://arxiv.org/submit/1933320/view).



Functional Central Limit Theorem (FCLT) for RMGCHP
III

Remark 1. When a(Xk) = Xk ∈ {+δ,−δ} are independent and
P (1,2) = P (2,1) = π∗ = 1/2, then a∗ = 0 and σ∗ = +δ.

Remark 2. When a(Xk) = Xk ∈ {+δ,−δ} are independent and
P (1,2) = P (2,1) = p, then π∗ = 1/2, a∗ = 0 and (σ∗)2 =
δ2p/(1− p).

Remark 3. When a(Xk) = Xk ∈ {+δ,−δ} is two-state Markov
chain and P (1,1) = p′, P (2,2) = p, then a∗ = δ(2π∗ − 1) and

(σ∗)2 = 4δ2(
1− p′+ π∗(p′ − p)

(p+ p′ − 2)2
− π∗(1− π∗).

Remark 4. When a(Xk) = Xk are i.i.d.r.v., then σ∗ = V ar(Xk)
and σ = V ar(Xk)

√
λ/(1− µ̂).



Applications of LLN for RMGCHP: Net Profit Condition
(NPC)

From Theorem 1 (LLN for RMGCHP) follows that net profit
condition has the following form:

c > a∗
λ

1− µ̂
,

where a∗ =
∑
k∈X a(k)π∗k.



Applications of LLN for RMGCHP: Net Profit Conditions
(NPC) for RMCHP and RMCPP

Corollary 1 (NPC for RMCHP).When a(Xk) = Xk are i.i.d.r.v.,
then a∗ = EXk, and the net profit condition in this case has the
form

c >
λ

1− µ̂
× E[Xk].

Corollary 2 (NPC for RMCPP). Of course, in the case of
Poisson process N(t) (µ̂ = 0) we have well-known net profit
condition:

c > λ× E[Xk].



Applications of LLN for RMGCHP: Premium Principles

A premium principle is a formula for how to price a premium
against an insurance risk. There many premium principles, and
the following are three classical examples of premium principles
(St =

∑N(t)
k=1 a(Xk)):

• The expected value principle: c = (1 + θ)× E[St]/t,

where the parameter θ > 0 is the safety loading;

• The variance principle: c = E[St]/t+ θ × V ar[St/t];

• The standard deviation principle: c = E[St]/t+ θ ×
√
V ar[St/t].



Applications of LLN for RMGCHP: Premium Principle (Ex-
pected Value Principle)

We present here the expected value principle as one of the pre-
mium principles (that follows from Theorem 1 (LLN for RMGCHP)):

c = (1 + θ)
a∗λ

1− µ̂
,

where θ > 0 is the safety loading parameter.



Application of FCLT for RMGCHP: Diffusion Approxima-
tion of Risk Process

From Theorem 2 (FCLT for RMGCHP) it follows that risk pro-
cess R(t) can be approximated by the following diffusion process
D(t) :

R(t) ≈ u+ ct−N(t)a∗+ σW (t) := u+D(t),

where a∗ and σ are defined above, N(t) is a Hawkes process and
W (t) is a standard Wiener process.

It means that our diffusion process D(t) has drift (c−a∗λ/(1−µ̂))

and diffusion coefficient σ, i.e., D(t) is N(c − a∗λ/(1 − µ̂)t, σ2t)-
distributed.



Application of FCLT for RMGCHP: Ruin Probability for
RMGCHP

We use the diffusion approximation of the RMGCHP to calcu-
late the ruin probability in a finite time interval (0, τ). The ruin
probability up to time τ is given by (Tu is a ruin time)

ψ(u, τ) = 1− φ(u, τ) = P (Tu < τ)

= P (min0<t<τ R(t) < 0)

= P (min0<t<τ D(t) < −u).



Application of FCLT for RMGCHP: Ruin Probability for
Diffusion Process

Theorem 3 (Ruin Probability for Diffusion Process):

ψ(u, τ) = Φ(−u+(c−a∗λ/(1−µ̂))τ
σ
√
τ

)

+ e
−2(c−a∗λ/(1−µ̂))

σ2 u
Φ(−u−(c−a∗λ/(1−µ̂))τ

σ
√
τ

),

where Φ is the standard normal distribution function and σ =

σ∗
√
λ/(1− µ̂).



Application of FCLT for RMGCHP: Ultimate Ruin Proba-
bility for Diffusion Process

Letting τ → +∞ in Theorem 3 above, we obtain:

Corollary 1 (The Ultimate Ruin Probability for RMGCHP):

ψ(u) = 1− φ(u) = P (Tu < +∞) = e
−2(c−a∗λ/(1−µ̂))

σ2 u
,

where σ and µ̂ are defined in Theorem 2 (FCLT for RMGCHP).



Application of FCLT for RMGCHP: The Distribution of the
Time to Ruin

From Theorem 3 and Corollary 1 follows:

Corollary 2 (The Distribution of the Time to Ruin). The
distribution of the time to ruin, given that ruin occurs is:

ψ(u,τ)
ψ(u) = P (Tu < τ |Tu < +∞)

= e
2(c−a∗λ/(1−µ̂))

σ2 u
Φ(−u+(c−a∗λ/(1−µ̂))τ

σ
√
τ

)

+ Φ(−u−(c−a∗λ/(1−µ̂))τ
σ
√
τ

)

.



Application of FCLT for RMGCHP: The Probability Den-
sity Function of the Time to Ruin

Differentiation in previous distribution by u gives the probability
density function fTu(τ) of the time to ruin:

Corollary 3 (The Probability Density Function of the Time
to Ruin):

fTu(τ) =
u

σ
√

2π
τ−3/2e

−(u−(c−a∗λ/(1−µ̂))τ)2

2σ2τ , τ > 0.



Application of FCLT for RMGCHP: The Probability Den-
sity Function of the Time to Ruin-Inverse Gaussian Distri-
bution

Remark 1 (Inverse Gaussian Distribution): Substituting u2/σ2 =

a and u/(c− a∗λ/(1− µ̂)) = b in the density function we obtain:

fTu(τ) = (
a

2πτ3
)1/2e−

a
2τ (τ−bσ )2

, τ > 0,

which is the standard Inverse Gaussian distribution with expected
value u/(c− a∗λ/(1− µ̂)) and variance uσ2/(c− a∗λ/(1− µ̂)).



Application of FCLT for RMGCHP: The Probability Den-
sity Function of the Time to Ruin-Ruin Occurs with P = 1

Remark 2 (Ruin Occurs with P = 1): If c = a∗λ/(1− µ̂), then
ruin occurs with P = 1 and the density function is obtained from
Corollary 3 with c = a∗λ/(1− µ̂), i.e.,

fTu(τ) =
u

σ
√

2π
τ−3/2e

− u2

2σ2τ , τ > 0.

The distribution function is:

FTu(τ) = 2Φ(−
u

σ
√
τ

), τ > 0.



Applications of LLN and FCLT for RMCHP

If we take the risk model based on compound Hawkes process
(RMCHP) (i.e., a(Xk) = Xk are i.i.d.r.v. and N(t) is the Hawkes
process),

R(t) = u+ ct−
N(t)∑
k=1

Xk

then we get all the above application results for RMCHP, includ-
ing net profit condition, premium principle, ruin and ultimate ruin
probabilities, with

a∗ = EXk and σ = V ar(Xk)
√
λ/(1− µ̂).

Here, σ∗ = V ar(Xk).



Applications of LLN and FCLT for RMCPP

If we take the risk model based on compound Poisson process
(RMCPP) (i.e., a(Xk) = Xk are i.i.d.r.v. and N(t) is the Poisson
process),

R(t) = u+ ct−
N(t)∑
k=1

Xk

then we get all the above application results (well-known) for
RMCPP, including net profit condition, premium principle, ruin
and ultimate ruin probabilities, with

a∗ = EXk and σ = V ar(Xk)
√
λ.

Here, σ∗ = V ar(Xk) and µ̂ = 0.



Paper/Submisssion

The results of this talk is based on the paper
’Risk Model based on General Compound Hawkes Process’
that is available on

arXiv:

https://arxiv.org/submit/1929063
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The End

Thank You!

Q&A time!


