Course Outline

UNIVERSITY OF CALGARY
DEPARTMENT OF PHYSICS and ASTRONOMY
COURSE OUTLINE

1. Course: Physics 449, Statistical Mechanics
 Lecture/Time/Session(s): L01; TR, 15:30-16:45, SB 105, Fall 2013
 Instructor(s): Dr. D.L. Feder
 Office: SB 535, 220-3638
 Office Hours: T, 13:30-15:30
 Email: dfeder@ucalgary.ca
 Physics and Astronomy Office: SB 605, 220-5385
 Course website: http://people.ucalgary.ca/~dfeder/449

2. Prerequisite(s): Physics 325: Applied Mathematics 219 or Mathematics 253 or 263.

3. GRADING: The University policy on grading and related matters is described sections F.1 and F.2 of the online University Calendar. In determining the overall grade in the course the following weights will be used:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Previews</td>
<td>10%</td>
</tr>
<tr>
<td>Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Midterm Examination</td>
<td>25%</td>
</tr>
<tr>
<td>Final Examination</td>
<td>25%</td>
</tr>
</tbody>
</table>

 A table of conversion from final course percentage to final course letter grade can be found on the Phys 449 site.

 There will be a final examination scheduled by the Registrar's Office.

4. Missed Components of Term Work. The regulations of the Faculty of Science pertaining to this matter are found in the Faculty of Science area of the Calendar in section 3.6: http://www.ucalgary.ca/pubs/calendar/current/sc-3-6.html. It is the student's responsibility to familiarize himself/herself with these regulations. See also http://www.ucalgary.ca/pubs/calendar/current/e-3.html.

5. TEXTBOOK: There is no official textbook for this course, but we will be loosely following "An Introduction to Thermal Physics," by Daniel Schroeder (Addison-Wesley, 2000). Other suggestions for textbooks can be found on the course website.

6. EXAMINATION POLICY: Students are encouraged to read the Calendar, Section G, on Examinations: http://www.ucalgary.ca/pubs/calendar/current/g.html

7. Writing across the curriculum: In this course, the quality of the student's writing in laboratory reports will be a factor in the evaluation of those reports. See also http://www.ucalgary.ca/pubs/calendar/current/e-2.html.
8. OTHER IMPORTANT INFORMATION FOR STUDENTS:

(a) **Academic Misconduct**: (cheating, plagiarism, or any other form) is a very serious offence that will be dealt with rigorously in all cases. A single offence may lead to disciplinary probation or suspension or expulsion. The Faculty of Science follows a zero tolerance policy regarding dishonesty. Please read the sections of the University Calendar under Section K, Student Misconduct to inform yourself of definitions, processes and penalties.

(b) **Assembly Points**: In case of emergency during class time, be sure to FAMILIARIZE YOURSELF with the information on assembly points.

(c) **Academic Accommodation Policy**: Students with documentable disabilities are referred to the following links: Calendar entry on students with disabilities and Student Accessibility Services.

(d) **Safewalk**: Campus Security will escort individuals day or night (http://www.ucalgary.ca/security/safewalk/). Call 220-5333 for assistance. Use any campus phone, emergency phone or the yellow phones located at most parking lot pay booths.

(e) **Freedom of Information and Privacy**: This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). As one consequence, students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information see also http://www.ucalgary.ca/secretariat/privacy.

(f) **Student Union Information**: VP Academic Phone: 220-3911 Email: suvpacu@ucalgary.ca
 SU Faculty Rep. Phone: 220-3913 Email: sciencerep@su.ucalgary.ca
 Student Ombudsman

(i) **Internet and Electronic Device Information**: You can assume that in all classes that you attend, your cell phone should be turned off unless instructed otherwise. Also, communication with other individuals, via laptop computers, Blackberries or other devices connectable to the Internet is not allowed in class time unless specifically permitted by the instructor. If you violate this policy you may be asked to leave the classroom. Repeated abuse may result in a charge of misconduct.
Here's the breakdown of the material. This table of contents is pulled directly from the course notes.

1. Energy in Thermal Physics (First Law of Thermodynamics)
 (a) Thermal Equilibrium
 (b) The Ideal Gas
 (c) Thermodynamic Derivation
 (d) Mechanical Derivation
 (e) Equipartition of Energy
 (f) Heat and Work
 (g) Compression Work: the Adiabat
 (h) Heat Capacity

2. The Second Law of Thermodynamics (aka The Microcanonical Ensemble)
 (a) Two-State Systems (aka Flipping Coins)
 i. Lots and lots of trials
 ii. Digression: Statistics
 (b) Flow toward equilibrium
 (c) Large Systems
 i. Discrete Random Walks
 ii. Continuous Random Walks
 iii. Quantum Walks and Quantum Computation
 (d) Entropy
 i. Boltzmann
 ii. Shannon Entropy
 iii. von Neumann Entropy

3. Equilibrium
 (a) Temperature
 (b) Entropy, Heat, and Work
 i. Thermodynamic Approach
 ii. Statistical Approach
 (c) Paramagnetism
 (d) Mechanical Equilibrium and Pressure
 (e) Diffusive Equilibrium and Chemical Potential

Midterm Examination
4. Engines and Refrigerators

(a) Heat Engines
(b) Refrigerators
(c) Real Heat Engines
 i. Stirling Engine
 ii. Steam Engine
 iii. Internal Combustion Engine
(d) Real Refrigerators
 i. Home Fridges
 ii. Liquefaction of Gases and Going to Absolute Zero

5. Free Energy and Chemical Thermodynamics

(a) Free Energy as Work
 i. Independent variables S and V
 ii. Independent variables S and P
 iii. Independent variables T and V
 • Independent variables T and P
 • Connection to Work
 vi. Varying particle number
(b) Free Energy as Force toward Equilibrium

6. Boltzmann Statistics (aka The Canonical Ensemble)

(a) The Boltzmann Factor
(b) Z and the Calculation of Anything
 i. Example: Pauli Paramagnet Again!
 ii. Example: Particle in aBox(1D)
 iii. Example: Particle in aBox(3D)
 • Example: HarmonicOscillator(1D)
 • Example: HarmonicOscillator(3D)
 vi. Example: The rotor
(c) The EquipartitionTheorem(reprise)
 i. Density of States
(d) The Maxwell Speed Distribution
 i. Interlude on Averages
 ii. Molecular Beams
(e) Gibbs’ Paradox

7. Grand Canonical Ensemble

(a) Chemical Potential Again
(b) Grand Partition Function
(c) Grand Potential

Final Examination