GEOG415 Lecture 10: River Channels

Importance of channel characteristics

Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology.

- Water balance gives an input of water (m³ s⁻¹)
- Channel characteristics determine the velocity, depth, etc.

Significance?

Hydraulic radius, \(R = \frac{A}{P} \)

For a wide rectangular-shaped channels \((w \gg d)\),

\[
A = \quad P = \quad R =
\]

\(R \) is generally close to the mean depth, \(d_{av} \).
Why is R called “radius”?

What is the significance?

Discharge, Q: volumetric flow rate (m3 s$^{-1}$)

$$Q = Au \cong wd_{av}u$$

Bankfull discharge, $Q_{bkf} = A_{bkf} u_{bkf}$

Conservation of mass

Discharge needs to remain constant along a stream section without tributaries, but velocity and cross-sectional area may change significantly.

Dunne and Leopold (1978, Fig. 16-20)

Dunne and Leopold (1978, Fig. 16-21)
Dissipation of energy

Mechanical energy = elevation + pressure + kinetic energy

Energy contained in a unit mass of stream water:

\[= g(z + d) + u^2/2 = \text{potential} + u^2/2 \]

\[g: \text{gravitational acceleration (} = 9.8 \text{ m s}^{-2}) \]

Mechanical energy is dissipated by friction and turbulence.

Friction coefficient, \(f \) (dimensionless) represents the relative amount of potential loss along the channel with respect to kinetic energy. This concept was originally developed by Darcy and Weisbach for low-velocity flow in pipes.

\[f = 4 \times \text{hydraulic radius} \times \text{potential gradient} / \text{kinetic energy} \]

\[f = 4R \frac{g(d + z)/L}{u^2/2} = \frac{8RgS}{u^2} \approx \frac{8d_{av}gS}{u^2} \]

where \(S \) is potential gradient (or the slope of the water surface), which can be approximated by the slope of channel bed.

It is straightforward, in principle, to determine \(f \) in the field.

e.g. \(A = 8 \text{ m}^2, \quad P = 17 \text{ m}, \quad s = 0.001, \quad u = 0.8 \text{ m s}^{-1} \)

\[f = ? \]
Experimentally determined f is very close to theoretical values for low-velocity flow in regular-shape pipes.

→ Engineering applications?

However, is f useful for hydrological predictions?

What is f dependent on?

It is usually impossible to estimate f except in some simple cases (see DL, Eq. 16-7). Note that f is still a very useful tool that bridges the empirical and theoretical aspects of flow.

More empirical Chezy formula is used in hydrology:

$$u = C R^{1/2} S^{1/2}$$

where C is a coefficient representing the effects of friction. Coefficient C is commonly estimated by Manning’s equation:

$$C = R^{1/6} / n$$ \hspace{1cm} \text{SI unit (metre for length)}

$$= 1.49 \, R^{1/6} / n$$ \hspace{1cm} \text{imperial unit (foot for length)}

where n is a dimensionless roughness factor.
Using Manning’s equation, Chezy formula can be written:

\[u = \frac{R^{2/3} S^{1/2}}{n} \]

\(R \) and \(S \) are in [m], and \(u \) is in [m s\(^{-1}\)].

This equation is called Manning formula.

Dunne and Leopold (1978, Table 16-1)

<table>
<thead>
<tr>
<th>BOUNDARY</th>
<th>MANNING ROUGHNESS, (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth concrete</td>
<td>0.012</td>
</tr>
<tr>
<td>Ordinary concrete lining</td>
<td>0.013</td>
</tr>
<tr>
<td>Vitrified clay</td>
<td>0.015</td>
</tr>
<tr>
<td>Shot concrete, untroweled, and earth channels in best condition</td>
<td>0.017</td>
</tr>
<tr>
<td>Straight unlined earth canals in good condition</td>
<td>0.020</td>
</tr>
<tr>
<td>Rivers and earth canals in fair condition—some growth</td>
<td>0.025</td>
</tr>
<tr>
<td>Winding natural streams and canals in poor condition—considerable moss growth</td>
<td>0.035</td>
</tr>
<tr>
<td>Mountain streams with rocky beds and rivers with variable sections and some vegetation along banks</td>
<td>0.040–0.050</td>
</tr>
</tbody>
</table>

Example: Concrete-lined irrigation canal, \(w = 10 \) m, \(d = 2 \) m. Slope = 10 m over 2 km.

\[R = \]

\[n = \]

\[u = \]

\[Q = \]
Manning formula is a useful tool for channel design or rough estimate of stream discharge. However, it cannot be used for accurately determining discharge in natural channels.

Why?

Water stage and rating curve

Stage: elevation of the water surface above an arbitrary datum.

Rating curve: relation between stage and discharge.

A stream gauging station is equipped with continuous stage recorder installed in a stilling well.

Stilling well - connected to the stream by an underground pipe.

Water level recorder - float + pulley system

Dunne and Leopold (1978, Fig. 16-2)

Goudie (1985. Encyclopaedic dictionary of physical geography, p.185)
How is a rating curve determined?
How do we measure discharge?

Area-velocity method

A cross-section is divided into strips. Why?

Average velocity (v) in each strip is represented by the velocity measured at “six-tenth” depth.

$$Q = A_1 v_1 + A_2 v_2 + \ldots$$
Float method

Measurement of surface velocity (v_s) using a float combined with a survey of cross-sectional area (A).

\[Q = 0.8v_sA \]

Assumption: average velocity (u) is about 80% of the surface velocity in the central part of stream.

V-notch weir

V-notch weir has a well-defined stage-discharge relation:

\[Q = C_w g^{1/2} \tan(\theta/2) h^{5/2} \]

C_w: weir coefficient (= 0.43 for a perfect weir, but should be determined by field calibration)

Goudie (1985, p.474)
Floodplain and bankfull stage

Floodplain: Flat area adjoining a river channel. Constructed under the present condition. Flooded at times of high discharge.

Bankfull: Water surface is level with the floodplain.

Terrace: Formed under different conditions. No longer flooded.

Dunne and Leopold (1978, Fig. 16-9)
The flat valley floor is constructed by the lateral migration of river channel \rightarrow sequential erosion and deposition.

Flooding of the floodplain is a natural process maintaining the morphologic characteristics of channels.

What size flood is most effective at shaping the channel? \rightarrow 100-yr flood?
Require large enough, but also frequent enough floods. → Bankfull discharge.

What is the return period of bankfull discharge?

Bankfull discharge roughly corresponds to 1.5-yr flood.

Implications?

![Graph showing relationship between discharge and drainage area.](image)

Dunne and Leopold (1978, Fig. 16-15)

Relation of bankfull discharge to drainage area

Larger drainage area \(D_A\) should result in larger bankfull discharge \(Q_{b kf}\). Why?
A (Washington): $Q_{bkf} = 55D_A^{0.93}$

E (Idaho): $Q_{bkf} = 28D_A^{0.69}$

Why is bankfull discharge in Idaho much smaller than that in Washington?

Why is the exponent not one?

Mean annual discharge

Mean annual discharge (Q_{ave}) generally increases linearly with the drainage area.

$$Q_{ave} = cD_A^{1.0}$$

c: proportionality constant

What is the physical meaning of *c*?

Exceptions?