Mollin, R. A. (3-CALG)

All solutions of the Diophantine equation \(x^2 - Dy^2 = n. \)

(English. English summary)

In this article the problem considered by the author is that of generating all proper solutions to the quadratic Diophantine equation \(x^2 - Dy^2 = Q, \) for any radicand \(D \) and arbitrary integer \(Q. \) The means is an infrastructure between ideal theory and the continued fraction algorithm (CFA). The problem has a lengthy history [L. E. Dickson, History of the theory of numbers. Vol. II, Chelsea, New York, 1966; MR0245500 (39 #6807b)], and the author presents a complete solution. The paper begins with basic terminology in the theory of quadratics [R. A. Mollin, Quadratics, CRC, Boca Raton, FL, 1996; MR1383823 (97e:11135)]. Several results on ideals are stated, including the ideal criterion for nonzero ideals \(I = [a, b + c\omega], \) where \(\omega \) is the principal surd associated with the discriminant \(\Delta, \) and the criterion for ideal equality pertaining to a primitive ideal \(I = [a, \alpha] \) in \([1, \omega]\), an order in \(\mathbb{Q}(\sqrt{\Delta}). \) The recurrence relations of the CFA for a quadratic irrational \(\gamma \) are stated; they depend on \(D \) and on generated sequences \(P_i, \) \(Q_i \) such that \(Q \mid P^2 - D. \) Moreover, in the CFA a sequence of equivalent ideals is generated. Known results concerning solutions to the equation \(x^2 - Dy^2 = \pm 1 \) are also presented using the CFA. The equation \(x^2 - Dy^2 = Q, \) \(|Q| < \sqrt{D} \) was studied by X. Zhang, in whose work [“Semi-simple continued fractions and Diophantine equations for real quadratic fields”, Internat. Center Theoret. Phys. Preprint IC/94/257, 1994], in an attempt to generalize, was apparently left a conjecture which was solved by the author. A result of Lagrange is stated equating the fundamental unit \(\varepsilon_\Delta \) to the product of \(l \) (period in CFA) quadratic irrationals. Related ideas are used by the author in proving the main theorems, in particular, the fact that \(\varepsilon^m \) can be written as \(\tilde{G}_{m-1} \tilde{B}_{m-1} \sqrt{D}, \) where \(m \) is any positive integer. The tilde notation refers to the periodic continued fraction expansion of

\[P_n + \sqrt{D} = (\tilde{a}_0; \tilde{a}_1, \ldots, \tilde{a}_{i+1}, \tilde{a}_{i+2}, \ldots, \tilde{a}_{i+l}), \]

for some \(i \geq 0; \) \(\tilde{a}_i \) arises in recurrence relations for \(\tilde{G} \) and \(\tilde{B}, \) \(n \) is the principal reduction index \((Q_n = 1) \) and \(l \) is the period of the continued fraction expansion of \(P_n + \sqrt{D}. \) The main results include the existence of a unique ideal \(I = [Q_0, P_0 + \sqrt{D}] \) that corresponds to a primitive solution \(\alpha_0 = x_0 + y_0\sqrt{D} \in [1, \sqrt{D}] \) and a unique primitive element.
$\alpha = x + y\sqrt{D}$, where $\alpha_0\alpha' = P_0 + \sqrt{D}$ and $N(\alpha_0) = Q_0$ (N is the norm and prime means conjugate). Another result gives the positive and negative associates (positive if $\beta = \varepsilon_i\Delta\alpha$ and $i > 0$, negative if $i < 0$) of the fundamental, proper solution α_0, the former given by $\delta_k(m) = G_{k(m)} + B_{k(m)}\sqrt{D} \neq \alpha_0$, where m is an arbitrary nonnegative integer and $k(m) = lm + n - 1$ is odd. The latter has a slightly different form, namely, $\delta_k(m) = -\tilde{G}_{k(m)} + \tilde{B}_{k(m)}\sqrt{D}$, where the double dot notation corresponds to $-\alpha'_{0}$. The main theorem extends the previous result to yield all positive [negative] associates such that $m > m_0$ [resp. \tilde{m}_0] where m_0 is the least non-negative integer such that $k(m_0)$ is odd, and specifies α_0 in terms of associates depending on m_0 or \tilde{m}_0. A result shows that given all fundamental proper solutions, all proper solutions are of the form $\pm G_{k(m)} + B_{k(m)}\sqrt{D}$, depending on the negative or positive associates. The author also forms results from the motivating work of Zhang [op. cit.]. A result shows that $G_{k(m)} = \hat{A}_{k(m)}$ and $B_{k(m)} = -\hat{B}_{k(m)}$, where the hat notation corresponds to the continued fraction expansion of \sqrt{D}. Moreover $G_{k(m)}^2 - B_{k(m)}^2D = Q$ under the same assumptions for $k(m)$, and this is equivalent to α_0 being a proper solution. The main result lists other equivalent statements to $\alpha_0 = x_0 + y_0\sqrt{D}$ being proper, one of which is $x_0/y_0 = \pm G_{k(m)}/B_{k(m)}$ or $x_0/y_0 = \pm \tilde{G}_{k(m)}/\tilde{B}_{k(m)}$ for some $m \geq 0$. In summary, the author has bridged ideal theory with the CFA to establish a complete solution of $x^2 - Dy^2 = Q$. George W. Grossman (1-CMI)