Let K be a finite real abelian extension of \mathbb{Q} with ring of integers \mathcal{O}_K, and with L a subfield of K such that $[L: \mathbb{Q}]$ is odd. Suppose $G(L/\mathbb{Q})$ has exponent n, and that $G(K/L)$ is a cyclic 2-group. The authors prove that the groups U_K^+ and U_K^2 of totally positive units and unit squares (respectively) of \mathcal{O}_K are equal, provided that (a) h_L is odd, (b) $-1 \equiv 2^k \pmod{n}$ for some k, and (c) exactly one L-prime ramifies in K if $L \neq K$. This is a generalization of a result of J. V. Armitage and A. Fröhlich [Mathematika 14 (1967), 94–98; MR0214566 (35 #5415)]; the latter assumed that K/\mathbb{Q} is cyclic and that $G(K/\mathbb{Q})$ has order p^a for an odd prime p.

Ezra Brown (Blacksburg, Va.)