34. Class Number One Criteria For Real Quadratic Fields. I

By R. A. MOLLIN
Mathematics Department, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
(Communicated by Shokichi IYANAGA, M. J. A., April 13, 1987)

In [5] we established criteria for \(\mathbb{Q}(\sqrt{n}) \) to have class number, \(h(n) \), equal to one when \(n = m^2 + 1 \) is square-free. Portions of this result were rediscovered by Yokoi [15] and Louboutin [4], both of whom also found similar criteria for square-free integers of the form \(n = m^2 + 4 \). It is the purpose of this paper to generalize all of the above by providing criteria for \(h(n)=1 \) for a positive square-free integer \(n \equiv 1 \pmod{4} \), under a certain assumption, which is satisfied (among others) by Richaud-Degert (R-D) types described below. One of these criteria is that \(-x^2 + x + (n - 1)/4 \) is equal to a prime for all integers \(x \in (1, (\sqrt{n-1})/2) \). This is the exact real quadratic field analogue of: \(h(-p)=1 \) if and only if \(x^2 - x + (p + 1)/4 \) is prime for all integers \(x \in [1, (p - 7)/4] \) where \(p \equiv 3 \pmod{4} \) is prime and \(p > 7 \). This was proved by Rabinowitsch [10] (see also [1], [12], and [13]).

We apply the criteria to real quadratic fields of narrow R-D type; i.e., those \(n = m^2 + r \) where \(|r| \in \{1, 4\}, n \neq 5 \). We also observe that when \(n = m^2 + 4 \) the existence of exactly six quadratic fields with \(h(n)=1 \) can be established by the same method used by Mollin and Williams in [9] to verify a similar fact for the case \(n = m^2 + 1 \).

The following notation is in force throughout the paper. For the field \(\mathbb{Q}(\sqrt{n}) \) we denote the fundamental unit by \((T + U\sqrt{n})/\sigma, \sigma = 2 \) if \(n \equiv 1 \pmod{4} \), and \(\sigma = 1 \) otherwise. Moreover \(N((T + U\sqrt{n})/\sigma) = \delta \) where \(N \) denotes the norm from \(\mathbb{Q}(\sqrt{n}) \) to \(\mathbb{Q} \). For convenience' sake we let \(A = (2T/\sigma - \sigma - 1)/U^2 \).

First we state the following result which we will need for the first main theorem. The proof of the following can be found in [5] (see also [8]).

Lemma. Let \(n \) be a square-free positive integer. If \(h(n)=1 \) then \(p \) is inert in \(\mathbb{Q}(\sqrt{n}) \) for all primes \(p < A \).

The converse of this Lemma is clearly false. For example, if \(n = 34 \) then \(\sigma = 1 \), \(T = 35 \), \(U = 6 \), and \(\delta = 1 \) so \(A = 68/36 < 2 \). However, \(h(34) = 2 \). However, the converse does hold under certain circumstances, as the following main result illustrates.

Theorem. Let \(n \equiv 1 \pmod{4} \) be a positive square-free integer, such that \((\sqrt{n-1})/2 \leq A \). Then the following are equivalent.

1. \(h(n)=1 \);
(2) \(p \) is inert in \(Q(\sqrt{n}) \) for all primes \(p < A \);

(3) \(f(x) = -x^3 + x + (n-1)/4 \equiv 0 \pmod{p} \) for all integers \(x \) and primes \(p \) satisfying \(0 < x < p < (\sqrt{n}-1)/2 \);

(4) \(f(x) \) is equal to a prime for all integers \(x \) such that \(1 < x < (\sqrt{n}-1)/2 \).

Proof. (2) follows from (1) by the Lemma; (note that in this case \((\sqrt{n}-1)/2 < A \) is not required). Assume now that (2) holds. If \(f(x) \equiv 0 \pmod{p} \) for some \(0 < x < p < (\sqrt{n}-1)/2 \) then \(n \equiv (2x-1)^2 \pmod{p} \); whence \(p \) is not inert in \(Q(\sqrt{n}) \). By (2) this forces \((\sqrt{n}-1)/2 > A \), contradicting the hypothesis. Thus (2) implies (3).

Assume (3) holds. If \((n-1)/4 \) is composite, but not the square of a prime, then there exists a prime \(r \) dividing \((n-1)/4 \) such that \(f(1) \equiv 0 \pmod{p} \) with \(0 < 1 < p < (\sqrt{n}-1)/2 \). This contradicts (3). Hence for some prime \(p \) we must have that \((n-1)/4 = p \) or \(p^2 \).

Suppose that there are primes \(p_1 \) and \(p_2 \) (not necessarily distinct) such that \(f(x) \equiv 0 \pmod{p_1p_2} \) for some integer \(x \) with \(1 < x < (\sqrt{n}-1)/2 \). If \(p_1p_2 \geq (n-1)/4 \) then \(x^2 + x + (n-1)/4 \geq (n-1)/4 \) whence \(x \leq 1 \), a contradiction.

Therefore, without loss of generality we may assume that \(p_1 < (\sqrt{n}-1)/2 \). If \(p_1 \) divides \(x \) then \(p_1 \) divides \((n-1)/4 \); whence \(p_1 = p \). However, we have that \(p = p_1 \leq x < (\sqrt{n}-1)/2 \leq p \), a contradiction. Hence, in consideration of the congruence \(f(x) \equiv 0 \pmod{p_1} \) we may assume without loss of generality that \(0 < x < p_1 \). Hence, we have \(f(x) \equiv 0 \pmod{p_1} \) with \(0 < x < p_1 < (\sqrt{n}-1)/2 \) which contradicts (3). Thus (3) implies (4).

Finally assume that (4) holds. If \(h(n) > 1 \) then by [3, Propositions 3 and 4, p. 126] there exist an integer \(x \) and a prime \(p \) such that \(0 \leq x < p \leq (\sqrt{n}-1)/2 \) and both:

(a) \(N((2x-1-\sqrt{n})/2) \equiv 0 \pmod{p} \) and

(b) there does not exist an integer \(k \) such that \(|N(2x+2kp-1-\sqrt{n})/2| < p^2 \).

From (a) it follows that \(-x^2 + x + (n-1)/4 \equiv 0 \pmod{p} \). Therefore, if \(1 < x < (\sqrt{n}-1)/2 \) then, by (4), \(-x^2 + x + (n-1)/4 \equiv p \). However \(x < p \leq (\sqrt{n}-1)/2 \); whence \(p = x(1-x) + (n-1)/4 > (1-p)^2 + p^2 = p \), a contradiction. Hence \(x = 0 \) or \(1 \). Therefore \(p \) divides \((n-1)/4 \); whence \(f(p) = p(-p+1+(n-1)/4p) \). If \(p < (\sqrt{n}-1)/2 \) then (4) implies that \(f(p) = p \). Thus \(p = (\sqrt{n}-1)/2 \), a contradiction. Hence \(p = (\sqrt{n}-1)/2 \). Setting \(k = 1 \) in (b) yields that: \(p^2 < |N(2p+1-\sqrt{n})/2| = |(4p^2+4p+1-n)/4| \equiv p \), a contradiction. This secures the result.

Q.E.D.

The following special case of the Theorem for certain R-D type was proved in [5]. It was also rediscovered by Yokoi [15] and Louboutin [4]. See also [7].

Corollary 1. If \(n = 4p^2 + 1 \) is square-free where either \(n \) is composite or \(l \) is composite then \(h(n) > 1 \). If \(n = 4q^2 + 1 \) where \(n \) and \(q \) are primes then the following are equivalent:

(1) \(h(n) = 1 \);

(2) \(p \) is inert in \(Q(\sqrt{n}) \) for all primes \(p < q \);
(3) \(f(x) = -x^2 + x + q \equiv 0 \pmod{p} \) for all integers \(x \) and primes \(p \) such that \(0 < x < p < q \);

(4) \(f(x) \) equals a prime for all \(x \) with \(1 < x < q \).

Proof. By [2] and [11] \(T = 4l \) and \(U = 2 \). Moreover, \(d = -1 \), \((\sqrt{n - 1})/2 = l \) and \(A = l \). Thus the hypothesis of the theorem is satisfied. Q.E.D.

S. Chowla conjectured that if \(p = m^2 + 1 \) is prime with \(m > 26 \) then \(h(p) > 1 \). Thus Corollary 1 reduces the conjecture to the case where \(m = 2q \), \(q > 13 \) prime. This exhausts the algebraic techniques (see [5]). Using analytic techniques and the generalized Riemann hypothesis, Mollin and Williams proved the Chowla conjecture in [9].

We now turn to another interesting consequence of the Theorem. The following R-D types were also considered by Yokoi [15] and Louboutin [4]. Both of these authors’ results follow as a special case of the following.

Corollary 2. Let \(n = m^2 + 4 > 5 \) be square-free. Then \(h(n) > 1 \) unless \(n = 4p + 1 \) where \(p \) is prime. In this case the following are equivalent:

1. \(h(n) = 1 \);

2. \(q \) is inert in \(Q(\sqrt{n}) \) for all primes \(q < \begin{cases} m & \text{if } n = m^2 + 4 \\ m - 2 & \text{if } n = m^2 - 4 \end{cases} \);

3. \(f(x) = -x^2 + x + p \equiv 0 \pmod{q} \) for all integers \(x \) and primes \(q \) satisfying \(0 < x < q < \sqrt{p} \);

4. \(f(x) \) is equal to a prime for all integers \(x \) satisfying \(1 < x < \sqrt{p} \).

Proof. By [2] and [11] \(T = m \) and \(U = 1 \). An easy check shows that \((\sqrt{n - 1})/2 \leq A \). Thus the hypothesis of the Theorem is satisfied, and the equivalence (1)–(4) is secured. It remains to show that \(h(n) > 1 \) unless \(n = m^2 + 4 = 4p + 1 \) where \(p \) is prime.

Suppose that \((n - 1)/4 \) is not prime and \(h(n) = 1 \). Then (3) of the Theorem implies, by the same reasoning as in the proof of the Theorem, that \((n - 1)/4 = p^2 \) for some prime \(p \). Therefore \(m^2 - 4p^2 = 5 \) (respectively \(m^2 - 4p^2 = -3 \)) when \(n = m^2 - 4 \) (respectively \(n = m^2 + 4 \)). In the former case \(m + 2p = 5 \) is forced, contradicting \(m > 3 \); and in the latter case \(m - 2p = -3 \) is forced, contradicting \(m > 1 \). This shows that \(n = 4p + 1 \) for some prime \(p \) when \(h(n) = 1 \).

Q.E.D.

Remark 1. In [15] Yokoi conjectured that \(h(n) > 1 \) when \(n = q^2 + 4 \) is square-free with \(q > 17 \) prime. Under the assumption of the generalized Riemann hypothesis this conjecture follows in the same fashion as did the analogous Chowla conjecture proved by Mollin and Williams in [9].

Remark 2. Suppose that \(n = 4p + 1 = m^2 + 4 \) where \(p \) is a prime and \(m \) is a positive integer. If \(s < \sqrt{p} \) is an odd prime then \(p \equiv t \pmod{s} \) for \(0 \leq t < s \). If there exists an integer \(u > 0 \) such that \(1 + 4t \equiv (2u - 1)^2 \pmod{s} \) then \(f(u) = -u^2 + u + p \equiv 0 \pmod{s} \) where \(0 < u < s < \sqrt{p} \). This violates condition (3) of Corollary 2. Hence \(h(n) > 1 \). (See [6] for connections with generalized Fibonacci primitive roots.)

The following Table illustrates Corollaries 1–2. We list the \(r = 1 \) case
only up to \(m = 26 \) since we know by Remark 1 that \(h(n) > 1 \) for \(m > 26 \).
Similarly we list the \(r = 4 \) only up to \(m = 17 \). For \(r = -4 \) with \(h(n) = 1 \) it is unlikely that any other such \(n \) exist than those listed in the Table.

<table>
<thead>
<tr>
<th>(m)</th>
<th>(r)</th>
<th>(n)</th>
<th>(h(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>145</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>197</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>257</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>401</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>485</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>677</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>173</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>229</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>283</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-4</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-4</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>-4</td>
<td>437</td>
<td>1</td>
</tr>
<tr>
<td>309</td>
<td>-4</td>
<td>95477</td>
<td>11</td>
</tr>
</tbody>
</table>

All class numbers are taken from [14].

In a subsequent work we will look at wide R-D types in detail.

Acknowledgement. This research was supported by both N.S.E.R.C.
Canada Grant #A8484 and an I. W. Killam Award held at the University
of Calgary in 1986.

References

[3] M. Kutsuna: On a criterion for the class number of a quadratic number field to
l'idéaux des corps quadratiques réels à l'aide de la théorie des fractions continues
(preprint).
[5] R. A. Mollin: Necessary and sufficient conditions for the class number of a real
quadratic field to be one, and a conjecture of S. Chowla (to appear in Proc.
Amer. Math. Soc).
[6] ———: Generalized Fibonacci primitive roots, and class numbers of real quadratic
(1986).

[15] H. Yokoi: Class-number one problem for certain kinds of real quadratic fields (preprint series #7, Nagoya University (1986)).