38. Solution of a Problem of Yokoi

By R. A. MOLLIN* and H. C. WILLIAMS **

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

In [12]–[16] Yokoi studied what he called p-invariants for a real quadratic field $Q(\sqrt{p})$ where $p \equiv 1 \pmod{4}$ is prime. In [9] we generalized this concept to an arbitrary real quadratic field $Q(\sqrt{d})$ where d is positive and square-free. We provided numerous applications including bounds for fundamental units and an investigation of the class number one problem related to non-zero n_d, (defined below). It is the purpose of this paper to give a complete list and a proof that the list is valid (with one possible value remaining) of all $Q(\sqrt{d})$ having class number $h(d)=1$ when $n_d \neq 0$. Moreover we show that if the exceptional value of d exists then it is a counterexample to the Generalized Riemann Hypothesis. This completes the task of Yokoi begun in [15]–[16].

In what follows the fundamental unit $\varepsilon_d(>1)$ of $Q(\sqrt{d})$ is denoted $(t_d + u_d \sqrt{d})/\sigma$ where $\sigma = \begin{cases} 2 & \text{if } d \equiv 1 \pmod{4} \\ 1 & \text{if } d \equiv 2, 3 \pmod{4} \end{cases}$. Now set:

$$B = (2t_d)/\sigma - N(\varepsilon_d) - 1)u_d^2$$

where N is norm from $Q(\sqrt{d})$. This boundary B was studied in [4], [5] and [14].

The following generalizes Yokoi’s notion of a p-invariant n_p where $p \equiv 1 \pmod{4}$ is prime (see [12]–[16]).

Let n_d be the nearest integer to B; i.e.,

$$n_d = \begin{cases} [B] & \text{if } B - [B] < \frac{1}{2} \\ [B] + 1 & \text{if } B - [B] \geq \frac{1}{2} \end{cases}$$

(where $[x]$ is the greatest integer less than or equal to x).

In [9] we proved the following:

Theorem 1. Let $d > 0$ be square-free and let $u_d > 2$. Then the following are equivalent:

1. $n_d = 0$
2. $t_d > 4d/\sigma$
3. $u_d^2 > 16d/\sigma^2$.

The above generalizes the main result of Yokoi in [12].

We also proved in [9] the following consequences of Theorem 1.

Corollary 1. If $n_d \neq 0$ then $\varepsilon_d < 8d/\sigma^2$.

Corollary 2. If $n_d \neq 0$ then there are only finitely many d with $h(d)=1$.

* Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.
** Computer Science Department, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.
Corollary 3. Let d_0 be a fixed positive square-free integer. Then there are only finitely many d with $n_d = n_0$ and $h(d) = 1$.

The above generalize results of Yokoi in [13]–[16]. Moreover this has consequences for the Gauss conjecture as follows.

Let:

(G_1): There exist infinitely many real quadratic fields $K = \mathbb{Q}(\sqrt{d})$ with $h(d) = 1$; (Gauss's conjecture).

(G_2): There exist infinitely many d with $n_d = 0$ and $h(d) = 1$.

(G_3): For a given natural number n, there exists at least one real quadratic field with $h(d) = 1$ and $n_d \geq n$.

In fact it is easily seen that:

Theorem 2. $(G_1) \iff (G_2) \iff (G_3)$.

Moreover there are applications for the Artin-Ankeny-Chowla conjecture; that $u_p \not\equiv 0 \pmod{p}$ if $p \equiv 1 \pmod{4}$ is prime; as well as the Mollin-Walsh conjecture [6], that if $d \equiv 7 \pmod{8}$ is positive square-free then $u_d \not\equiv 0 \pmod{d}$. In fact we proved the following in [9].

Theorem 3. If $d > 0$ is square-free and $n_d = 0$ then $u_d \not\equiv 0 \pmod{d}$.

Thus the aforementioned two conjectures hold when $n_d = 0$.

Now we turn to the main function of this paper which is to use the above results to actually determine all d with $h(d) = 1$ and $n_d = 0$.

First we provide a table of such values, and then prove that we have all of them, (except possibly one which we show would be a counter-example to the Generalized Riemann Hypothesis).

Theorem 4. If $h(d) = 1$ and $n_d = 0$ then (with possibly one more value remaining) d is an entry in the following Table.

<table>
<thead>
<tr>
<th>d</th>
<th>$\log (\sqrt{d})$</th>
<th>d</th>
<th>$\log (\sqrt{d})$</th>
<th>d</th>
<th>$\log (\sqrt{d})$</th>
<th>d</th>
<th>$\log (\sqrt{d})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.813735113</td>
<td>53</td>
<td>1.965720471</td>
<td>237</td>
<td>4.346361767</td>
<td>917</td>
<td>7.074116099</td>
</tr>
<tr>
<td>3</td>
<td>1.866264041</td>
<td>61</td>
<td>3.664218469</td>
<td>269</td>
<td>5.669936690</td>
<td>941</td>
<td>7.087867062</td>
</tr>
<tr>
<td>5</td>
<td>0.48121218521</td>
<td>62</td>
<td>4.486323128</td>
<td>283</td>
<td>6.380552290</td>
<td>1013</td>
<td>6.627804083</td>
</tr>
<tr>
<td>6</td>
<td>2.2924316609</td>
<td>69</td>
<td>3.2172719712</td>
<td>317</td>
<td>4.488762502</td>
<td>1077</td>
<td>5.989703264</td>
</tr>
<tr>
<td>7</td>
<td>2.780459333</td>
<td>77</td>
<td>2.154647916</td>
<td>341</td>
<td>5.624004473</td>
<td>1133</td>
<td>4.610624728</td>
</tr>
<tr>
<td>11</td>
<td>2.939228461</td>
<td>83</td>
<td>5.098292345</td>
<td>398</td>
<td>6.682107027</td>
<td>1253</td>
<td>5.176517817</td>
</tr>
<tr>
<td>13</td>
<td>1.947632173</td>
<td>93</td>
<td>3.366104492</td>
<td>413</td>
<td>4.140900968</td>
<td>1293</td>
<td>4.585615389</td>
</tr>
<tr>
<td>14</td>
<td>3.400684414</td>
<td>101</td>
<td>2.998222956</td>
<td>437</td>
<td>3.042247121</td>
<td>1483</td>
<td>7.755150289</td>
</tr>
<tr>
<td>17</td>
<td>2.094712547</td>
<td>133</td>
<td>5.183281804</td>
<td>453</td>
<td>5.008901259</td>
<td>1613</td>
<td>7.998390539</td>
</tr>
<tr>
<td>21</td>
<td>1.567822730</td>
<td>141</td>
<td>5.249906702</td>
<td>461</td>
<td>5.899904596</td>
<td>1757</td>
<td>6.913783826</td>
</tr>
<tr>
<td>23</td>
<td>3.870767008</td>
<td>149</td>
<td>4.111125099</td>
<td>509</td>
<td>6.329794902</td>
<td>1877</td>
<td>7.376526241</td>
</tr>
<tr>
<td>29</td>
<td>1.647231146</td>
<td>157</td>
<td>5.331342056</td>
<td>557</td>
<td>5.438425692</td>
<td>2453</td>
<td>8.179199718</td>
</tr>
<tr>
<td>33</td>
<td>3.826184712</td>
<td>167</td>
<td>5.817129201</td>
<td>578</td>
<td>6.641804655</td>
<td>2477</td>
<td>4.727345834</td>
</tr>
<tr>
<td>37</td>
<td>2.491779826</td>
<td>173</td>
<td>2.570814781</td>
<td>677</td>
<td>3.951615381</td>
<td>2693</td>
<td>8.391856751</td>
</tr>
<tr>
<td>41</td>
<td>4.193217346</td>
<td>197</td>
<td>3.337477589</td>
<td>717</td>
<td>5.434779717</td>
<td>3063</td>
<td>8.150748053</td>
</tr>
<tr>
<td>43</td>
<td>1.564599869</td>
<td>213</td>
<td>4.289271738</td>
<td>778</td>
<td>4.934626983</td>
<td>3117</td>
<td>8.564276762</td>
</tr>
<tr>
<td>47</td>
<td>4.642399669</td>
<td>227</td>
<td>6.113677285</td>
<td>797</td>
<td>5.906362725</td>
<td>3533</td>
<td>7.098523222</td>
</tr>
</tbody>
</table>
Proof. By Corollary 1 we have that \(\varepsilon_d < 8d/\sigma^2 \). Thus our task is to find all positive square-free \(d \) such that \(h(d) = 1 \) and \(1 < \varepsilon_d < 8d/\sigma^2 \). Let \(\Delta = 4d/\sigma^2 \). A classical class number formula is:

\[2h(d) \log(\varepsilon_d) = \sqrt{\Delta} L(1, \chi). \]

Moreover a result of Tatzuwa [11] says:

If \(\frac{1}{2} > \alpha > 0 \) and \(\Delta \geq \max(e^{1/4}, e^{0.5}) \) then with one possible exception \(L(1, \chi) > 0.655 \alpha / d \) where \(\chi \) is a real, non-principal, primitive character modulo \(\Delta \).

We now use the above to complete our task.

Choose \(\alpha = 0.0885 \) and \(\Delta > 80,775.9 \). Then, since \(\log \varepsilon_d < \log 2\Delta \) we have:

(with one possible exception):

\[h(d) > (\sqrt{\Delta})(0.0885)(0.655)/(2 \log 2\Delta)(\Delta^{0.085}). \]

Hence \(h(d) > 1 \) if \(\Delta > 5 \times 10^4 \); (in fact \(h(d) > 1.026755418 \)).

Now we proceed to show that below this bound the only \(h(d) = 1 \) with \(\varepsilon_d < 8d/\sigma^2 \) are those in the Table. First we need some notation and facts from the theory of continued fractions.

Let \(w_d = (\sigma - 1 + \sqrt{d})/\sigma \) and denote the continued fraction of \(w_d \) by \(w_d = (a, a_1, a_2, \ldots, a_k) \); whence having period \(k \); and \(a_0 = 1 = \lfloor w_d \rfloor \) while:

\[a_i = \lfloor (P_i + \sqrt{d})/Q_i \rfloor \text{ for } i \geq 1, \]

where:

\[(P_0, Q_0) = (\sigma - 1, \sigma); \quad P_{i+1} = a_i Q_i - P_i \quad \text{for } i \geq 0 \]

\[Q_{i+1} = d - P_{i+1}, \quad \text{for } i \geq 0. \]

Now we return to our task.

Case 1. \(d \equiv 2, 3 \pmod{4} \); whence \(\Delta = 4d \).

Since \(\Delta \) is even then 2 ramifies. Thus by [3, Theorem 2.1], \(Q_i \equiv 2 \), with \(k \) even whenever \(h(d) = 1 \), provided \(\Delta > 20 \). (If \(\Delta \leq 20 \) then we get our values \(d = 2, 3 \) of the Table).

From [7] we also have:

\[\varepsilon_d = \prod_{i=1}^{k} \left((P_i + \sqrt{d})/Q_{i-1} \right) \quad (P_i \geq 1). \]

Thus:

\[\varepsilon_d > (\sqrt{d})(\sqrt{d}/2) \prod_{i=1}^{k} \left((P_i + \sqrt{d})/Q_{i-1} \right) \]

where the product runs from \(i = 2 \) to \(i = k \), excluding \(i = k/2 + 1 \).

Now:

\[(P_i + \sqrt{d})/Q_{i-1} = (P_{i+1} + \sqrt{d})/Q_i \]

\[= (P_{i+1} + \sqrt{d})/(\sqrt{d} - P_i) = a_i Q_i / (\sqrt{d} - P_i) + 1 > 2. \]

If \(k \geq 10 \) then \(\varepsilon_d > (\sqrt{d})(\sqrt{d}/2) 2^{(k/2) - 1} \geq 8d \), a contradiction. Since \(k \leq 10 \) then by computation we arrive at \(d \leq 7653 \). Our computation shows that of those values only the following satisfy our criteria and appear in the Table:

\[d \in \{ 2, 3, 6, 7, 11, 14, 23, 38, 47, 62, 83, 167, 227, 398 \}. \]

Case 2. \(d = 4 \equiv 1 \pmod{8} \).

Thus 2 splits and so since \(h(d) = 1 \) we get \(Q_i / 2 = Q_i / (\sigma - 2) / 2 \) for some \(j \neq 0 \) (provided \(d > 20 \)). (If \(d \leq 20 \) then we get only the value \(d = 17 \) which is on our Table).
Therefore:
\[\varepsilon_d > (\sqrt{d}/2)(\sqrt{d}/4)^x \prod (P_i + \sqrt{d})/Q_{i-1} \geq d\sqrt{d}/32 > 2d \]
whenever \(d > 64 \), a contradiction. (Here the product runs from \(i = 2 \) to \(i = k \) excluding \(i = j + 1 \) and \(i = k - j + 1 \).)

Hence \(\sqrt{d} \leq 64 \); i.e., \(d \leq 4096 \). In this range our computation gives us only the following values satisfying our criteria: \(d \in \{17, 38, 41\} \).

Case 3. \(d = 6 \equiv 5 \pmod{8} \).

By [2], since \(d < 5 \times 10^6 \) there exists a prime \(p < 67 \) such that \((d/p) = 1 \), where \((\cdot) \) is the Kronecker symbol. Suppose \(\sqrt{d}/2 > 67 \). Then \(p \) splits in \(Q(\sqrt{d}) \) and so \(Q_j = Q_{k-j} = 2p \) for some \(j \neq 0 \) (provided \(d > 20 \). If \(d > 20 \) then we get only \(d = 5, 13 \).

Now let \(\varepsilon = (1 + \sqrt{5})/2 \) and \(\psi_i = (P_i + \sqrt{d})/Q_{i-1} \). By [10, Corollary 1, p. 873] \(\prod_{i=a} b \psi_i > \tau^{a+b} \) for \(b \geq a \). Thus:
\[\prod_{i=3}^k \psi_i \prod_{i=j+2}^k \psi_i \psi_i > \tau^{j-k-j-(j+2)k-(k-j+2)} = \tau^{k-j} \]
(where the initial product ranges over \(i = 2 \) to \(i = k \) excluding \(i = j + 1 \) and \(i = k - j + 1 \)).

Hence \(\varepsilon_d > (\sqrt{d}/2)(\sqrt{d}/2p)^x \prod \psi_i > 2d(\sqrt{d}\tau^{k-j}/16p^x) \)
where the product ranges as in the previous one. Since \(p \leq 67 \) we get that if \(\tau^{k-j} > 536 \) then \(\sqrt{d}\tau^{k-j} > 71824 > 16p^2 \). But \(\tau^{k-j} > 536 \) implies \(k - 6 > (\log 536)/\log \tau = 13.06 \) so \(k > 19.06 \). Thus: If \(d > 17956 \) and \(k \geq 20 \) then \(\varepsilon_d > 2d \), a contradiction. If \(d > 17956 \) and \(k < 20 \) then \(h(d) = 1 \) by computation that \(d \leq 30917 \). In this case there exists a prime \(p \leq 29 \) such that \((d/p) = 1 \). Hence if \(\sqrt{d}/2 > 2 \cdot 29 = 58 \) we get \(Q_j = Q_{k-j} = 2p \) for some \(p \leq 29 \). Thus \(\varepsilon_d > 2d(\sqrt{d}\tau^{k-j}/16 \cdot 29^x) \) as above. Hence, if \(d > 13456 \) and \(k \geq 16 \) then \(\varepsilon_d > 2d \), a contradiction. If \(d > 13456 \) and \(k \leq 15 \) then \(d < 23117 \).

Our computation on this bound now yields the remaining values in the Table.

Remark 1. In [15] Yokoi found the 30 primes \(p \equiv 1 \pmod{4} \) with \(h(p) = 1 \) and \(n_p \neq 0 \) (with one possible exception). We have completed the task by adding another 35 values to the list for a total of 68. As seen by the above proof there are 14 values of \(d \equiv 2 \pmod{4} \) of which 9 are primes. For \(d \equiv 1 \pmod{8} \) we got only 17, 33 and 41. The remainder are \(d \equiv 5 \pmod{8} \). Of these 51 remaining values 28 are primes, those found by Yokoi along with 17 and 41.

The composite values which we added are the 23 values:

\[\{21, 69, 77, 93, 133, 141, 213, 237, 341, 413, 437, 453, 573, 717, 917, 1077, 1133, 1253, 1293, 1757, 2453, 3053, 3817\} \]

We also have a list, too long to include here, of all values of squarefree \(d \) with \(n_d = 0 \), up to 39,999 with their class numbers and regulators.

Remark 2. Kim [1] has shown that if the Generalized Riemann Hypothesis (GRH) holds then Tatzuwara's theorem is true without exception. Hence if the exceptional value exists then it is a counterexample to the GRH.
Remark 3. Observe that the Table contains all the ERD-types with $h(d)=1$ (i.e., all types $h(d)=1$ where $d=F+r$ with $4l\equiv 0 \pmod{r}$). These were found by the authors in [8]. Thus there are 25 non-ERD type and they are

\[41, 61, 133, 149, 157, 269, 317, 341, 461, 509, 557, 773, 797, \\
917, 941, 1013, 1493, 1613, 1877, 2453, 2477, 2693, 3053, 3317, \\
3533. \]

Acknowledgements. The authors' research is supported by NSERC Canada grants #A8484 and #A7649 respectively. Moreover the first author's current research is also supported by a Killam research award held at the University of Calgary in 1990.

Finally, the authors wish to thank Gilbert Fung, a graduate student of the second author, for performing the computing involved in compiling the above Table.

References

[16] ———: Bounds for fundamental units and class numbers of real quadratic fields with prime discriminant (preprint).