Characterization of $D=P^2+Q^2$ when $\gcd(P,Q)=1$ and $x^2-Dy^2=-1$ has no integer solutions.

The author considers a problem posed by J. P. Robertson and K. R. Mathews [Am. Math. Mon. 115, No. 4, 346–349 (2008; Zbl 1144.11008)]. Let F be a quadratic field, \mathcal{O}_F its maximal order \mathcal{I}_F the group of fractional ideals, \mathcal{P}_F the group of principal ideals and \mathcal{P}_F^+ the group of fractional ideals $I=(a)$ such that $N_F(a)>0$. Let $\mathcal{C}_F=\mathcal{I}_F/\mathcal{P}_F$ be the wide ideal class group and $\mathcal{C}_F^+=\mathcal{I}_F/\mathcal{P}_F^+$ the narrow ideal class group. Moreover, let Δ_F be the discriminant of F and put $D_F=\Delta_F$ if $\Delta_F \equiv 1 \mod 4$ and $D_F=\Delta_F/4$ otherwise. Then the author shows the following equivalence: D_F is a sum of two relative prime squares and there is no unit $u \in \mathcal{O}_F^*$ with $N_F(u)=-1$ if and only if there exists an ideal $I \in \mathcal{C}_F$ of order 2 that is not an image of an ambiguous class of the canonical map $\mathcal{C}_F^+ \to \mathcal{C}_F$. A similar result is also obtained for non-maximal orders \mathcal{O} of F.

Reviewer: Volker Ziegler (Graz)

MSC:
11D09 Quadratic and bilinear diophantine equations
11D85 Representation problems of integers
11R11 Quadratic extensions
11R29 Class numbers, class groups, discriminants

Keywords:
Pell's equation; sum of two squares; quadratic fields; cycles of ideals; ambiguous ideals