Computer-aided diagnosis of subtle signs of breast cancer: Architectural distortion in prior mammograms

Rangaraj M. Rangayyan

Department of Electrical and Computer Engineering
University of Calgary, Calgary, Alberta, CANADA
Mammography

Signs of Breast Cancer:

- Masses
- Calcifications
- Bilateral asymmetry
- Architectural distortion (often missed)
Masses

- Breast cancer causes a desmoplastic reaction in breast tissue
- A mass is observed as a bright, hyperdense object
Calcification

Deposits of calcium in breast tissue
Bilateral asymmetry

Differences in the overall density distribution in the two breasts
Computer-aided diagnosis

- Increased number of cancers detected
- Increased early-stage malignancies detected
- Increased recall rate
- Missed cases of architectural distortion
Architectural distortion

- Third most common mammographic sign of nonpalpable breast cancer
- The normal architecture of the breast is distorted
- No definite mass visible
- Spiculations radiating from a point
- Focal retraction or distortion at the edge of the parenchyma
Architectural distortion

spiculated focal retraction incipient mass
Normal vs architectural distortion
Normal vs architectural distortion
Initial algorithm for detection of architectural distortion

1. Extract the orientation field
2. Filter and downsample the orientation field
3. Analyze orientation field using phase portraits
4. Postprocess the phase portrait maps
5. Detect sites of architectural distortion
Gabor filter

\[g(x, y) = \frac{1}{2\pi \sigma_x \sigma_y} \exp \left[-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right) \right] \cos(2\pi fx) \]

Design parameters

- line thickness \(\tau \)
- elongation \(l \)
- orientation \(\theta \)

Gabor parameters

\[f = \frac{1}{\tau}; \quad \sigma_x = \frac{\tau}{2\sqrt{2 \ln 2}} \]

\[\sigma_y = l\sigma_x; \quad \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \]
Design of Gabor filters

\[
\begin{align*}
l &= l_0 \\
\tau &= \tau_0 \\
\theta &= \theta_0
\end{align*}
\]

\[
\begin{align*}
l &> l_0 \\
\tau &= \tau_0 \\
\theta &= \theta_0
\end{align*}
\]

\[
\begin{align*}
l &= l_0 \\
\tau &> \tau_0 \\
\theta &= \theta_0
\end{align*}
\]

\[
\begin{align*}
l &= l_0 \\
\tau &= \tau_0 \\
\theta &> \theta_0
\end{align*}
\]
Example of Gabor filtering

Log-magnitude Fourier spectrum

Inverted Y channel of retinal fundus image

Magnitude response of a single Gabor filter: $\tau = 8, \ l = 2.9, \ \theta = 45^\circ$
Extracting the orientation field

Compute the texture orientation (angle) at each pixel

Gabor filtering (line detection)
Phase portraits

\[\mathbf{\tilde{v}(x, y)} = \begin{pmatrix} \mathbf{v}_x \\ \mathbf{v}_y \end{pmatrix} = \mathbf{A} \begin{pmatrix} x \\ y \end{pmatrix} + \mathbf{b} \]

node saddle spiral
Texture analysis using phase portraits

Fit phase portrait model to the analysis window

Nonlinear least squares optimization

\[
A = \begin{bmatrix}
1.1 & 0.3 \\
-0.2 & 1.7 \\
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
-4.8 \\
-7.9 \\
\end{bmatrix}
\]
Texture analysis using phase portraits

Cast a vote at the fixed point $= \mathbf{A}^{-1} \mathbf{b}$ in the corresponding phase portrait map

Orientation field

Node

Saddle

Spiral

real eigenvalues of same sign
Detection of architectural distortion
Initial results of detection

- Test dataset: 19 mammograms with architectural distortion (MIAS database)
- Sensitivity: 84%
- 18 false positives per image!
Reduction of false positives
Rejection of confounding structures

- Confounding structures include
 - Edges of vessels
 - Intersections of vessels
 - Edge of the pectoral muscle
 - Edge of the fibroglandular disk

“Curvilinear Structures”
Nonmaximal suppression

ROI with a vessel Gabor magnitude output Output of nonmaximal suppression (NMS)
Rejection of confounding CLS

Output of NMS

CLS Retained

Angle from the orientation field and direction perpendicular to the gradient vector differ by < 30°
Improved detection of sites of architectural distortion

Node map (without CLS analysis)
Node map (with CLS analysis)
Free-response ROC analysis

With CLS analysis

Without CLS analysis
Effect of condition number of matrix A on the orientation field

Condition Number: The ratio of the largest to smallest singular value of a matrix

<table>
<thead>
<tr>
<th>Example</th>
<th>Matrix A</th>
<th>Eigenvalues</th>
<th>Angle between principal axes</th>
<th>Condition number</th>
<th>Orientation field</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 3 \end{bmatrix}$</td>
<td>$\lambda_1 = 1$ $\lambda_2 = 3$</td>
<td>90°</td>
<td>3</td>
<td>![Orientation Field A]</td>
</tr>
<tr>
<td>B</td>
<td>$\begin{bmatrix} 1 & 7.46 \ 0 & 3 \end{bmatrix}$</td>
<td>$\lambda_1 = 1$ $\lambda_2 = 3$</td>
<td>15°</td>
<td>21.85</td>
<td>![Orientation Field B]</td>
</tr>
<tr>
<td>C</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 20 \end{bmatrix}$</td>
<td>$\lambda_1 = 1$ $\lambda_2 = 20$</td>
<td>90°</td>
<td>20</td>
<td>![Orientation Field C]</td>
</tr>
</tbody>
</table>
Results

- 19 cases of architectural distortion
- 41 normal control mammograms (MIAS)

- Symmetric matrix A: node and saddle only
- Condition number of $A > 3$: reject result

- *Sensitivity*: 84% at 4.5 false positives/image

- *Sensitivity*: 95% at 9.9 false positives/image
Prior mammograms

Detection mammogram 1997

Prior mammogram 1996
Prior mammograms

Detection mammogram 1997

Prior mammogram 1996
Prior mammograms

Detection mammogram 1997

Prior mammogram 1996
Interval cancer

- Breast cancer detected outside the screening program in the interval between scheduled screening sessions

- "Diagnostic mammograms" not available
Dataset

- 106 prior mammographic images of 56 individuals diagnosed with breast cancer (interval-cancer cases)
- Time interval between prior and detection (33 cases)
 average: 15 months, standard deviation: 7 months
 minimum: 1 month, maximum: 24 months
- 52 mammographic images of 13 normal individuals
- Normal control cases selected represent the penultimate screening visits at the time of preparation of the database
Interval cancer: site of architectural distortion

Mammogram

Gabor Magnitude
Interval cancer: site of architectural distortion

Orientation field
Site of architectural distortion

Mammogram

Gabor magnitude

Orientation field

Node map
Interval cancer: potential sites of architectural distortion

Node map

Automatically detected ROIs
Examples of detected ROIs

True-positive

False-positive
Automatically detected ROIs

<table>
<thead>
<tr>
<th>Data Set</th>
<th>No. of Images</th>
<th>No. of ROIs 128 x 128 pixels at 200 μm/pixel</th>
<th>No. of True-Positive ROIs</th>
<th>No. of False-Positive ROIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior mammograms of 56 interval-cancer cases</td>
<td>106</td>
<td>2821</td>
<td>301</td>
<td>2520</td>
</tr>
<tr>
<td>Penultimate mammograms of 13 normal cases</td>
<td>52</td>
<td>1403</td>
<td>0</td>
<td>1403</td>
</tr>
<tr>
<td>Total</td>
<td>158</td>
<td>4224</td>
<td>301</td>
<td>3923</td>
</tr>
</tbody>
</table>
Feature extraction from ROIs

Potential Sites of Architectural Distortion

- Phase Portrait Analysis (Node value)
- Fractal Analysis (Fractal Dimension)
- Analysis of Angular Spread of Power
- Statistical Analysis of Texture (Haralick)
- Structural Analysis of Texture (Laws)

Feature Selection, Pattern Classification

Classification of ROIs
Fractal and spectral analysis

TP ROI, \(s(x, y) \)

Fourier power spectrum, \(S(u, v) \)

Power spectrum in polar coordinates, \(S(f, \theta) \)

Angular spread of power, \(S(\theta) \)

Radial frequency spectrum, \(S(f) \)
Operators of length five pixels may be generated by convolving the basic L3, E3, and S3 operators:

- $L5 = L3 \ast L3 = [1 \ 4 \ 6 \ 4 \ 1]$ (local average)
- $E5 = L3 \ast E3 = [-1 \ -2 \ 0 \ 2 \ 1]$ (edges)
- $S5 = -E3 \ast E3 = [-1 \ 0 \ 2 \ 0 \ -1]$ (spots)
- $R5 = -S3 \ast S3 = [1 \ -4 \ 6 \ -4 \ 1]$ (ripples)
- $W5 = -E3 \ast S3 = [-1 \ 2 \ 0 \ -2 \ 1]$ (waves)

2D 5×5 convolution operators:

- $L5L5 = L5^T L5$
- $W5W5 = W5^T W5$
- $R5R5 = R5^T R5$ etc.
Laws’ texture energy

Sum of the absolute values in the filtered images in a 15×15 window
Geometrical transformation for Laws’ feature extraction
Analysis of angular spread:
True-positive ROI

- Frequency domain
- Gabor magnitude
- Gabor orientation
- Coherence
- Orientation strength
Analysis of angular spread: False-positive ROI

- Frequency domain
- Gabor magnitude
- Gabor orientation
- Coherence
- Orientation strength
Results with selected features

<table>
<thead>
<tr>
<th>Classifiers</th>
<th>AUC using the selected features with stepwise logistic regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLDA (Leave-one-ROI-out)</td>
<td>0.75</td>
</tr>
<tr>
<td>Bayesian (Leave-one-ROI-out)</td>
<td>0.76</td>
</tr>
<tr>
<td>SLFF-NN (Single-layer feed forward: tangent-sigmoid)</td>
<td>0.78</td>
</tr>
<tr>
<td>SLFF-NN* (Single-layer feed forward: tangent-sigmoid)</td>
<td>0.78 ± 0.02</td>
</tr>
</tbody>
</table>

* Two-fold random subsampling, repeated 100 times
Free-response ROC

Sensitivity

80% at 5.8 FP/image
90% at 8.1 FP/image

using features selected with stepwise logistic regression, the Bayesian classifier, and the leave-one-image out method
Bayesian ranking of ROIs: unsuccessful case
Bayesian ranking of ROIs: successful detection
Geometrical analysis of spicules and Gabor angle response

Index of convergence of spicules

\[
ICS = \sum_{i=1}^{P} \sum_{j=1}^{Q} M(i, j) \left| \cos[\theta(i, j) - \alpha(i, j)] \right|
\]

\(P \times Q\): size of the ROI
\(\theta(i, j)\): Gabor angle response within the range \([-89^\circ, 90^\circ]\)
\(M(i, j)\): Gabor magnitude response
\(\alpha(i, j)\): angle of a pixel with respect to the horizontal toward the center of ROI, in the range \([-89^\circ, 90^\circ]\)
ICS quantifies the degree of alignment of each pixel toward the center of the ROI weighted by the Gabor magnitude response.
FROC analysis

Sensitivity
80%
5.3 FP/patient

90%
6.3 FP/patient
Expected loci of breast tissue
Landmarking of mammograms:
breast boundary, pectoral muscle, nipple

Second- and fifth-order polynomials fitted to parts of breast boundary
Derivation of expected loci of breast tissue: interpolation
Number of points in curve = \(M \)

\(L_i = \perp \) length between two curves at the \(i \)-th point

\(L_{\text{max}} = \max(L_i) \)

Number of curves = \(N = L_{\text{max}} + 1 \)

Distance at \(i \)-th point = \(L_i / L_{\text{max}} = L_i / (N-1) \)

\(i \)-th point of \(n \)-th curve:

\[
\begin{align*}
x_i(n) &= x_i(1) - [x_i(1) - x_i(N_2)] \left(\frac{n - 1}{N_2 - 1} \right) \\
y_i(n) &= y_i(1) - [y_i(1) - y_i(N_2)] \left(\frac{n - 1}{N_2 - 1} \right)
\end{align*}
\]
Divergence with respect to the expected loci of breast tissue

\[
\gamma(i, j) = \frac{\sum_{m=1}^{L} \sum_{n=1}^{L} |M(m, n) \cos[\theta(m, n) - \phi(i, j)]|}{\sum_{m=1}^{L} \sum_{n=1}^{L} M(m, n)}
\]

- \(M\): Gabor magnitude response
- \(\theta\): Gabor angle response
- \(\phi\): expected orientation of breast tissue
- \(L\): 25 pixels at 200 \(\mu\)m/pixel
- 180 Gabor filters used over \([-90, 90]\) degrees

\[
D(i, j) = 1 - \gamma(i, j)
\]
Orientation field of breast tissue obtained using Gabor filters

Original image Gabor magnitude Gabor angle
Divergence with respect to the expected loci of breast tissue

Original image Divergence map Thresholded map
Automatically detected regions of interest

ROC: AUC = 0.61

FROC:
Sensitivity = 80%
at 9.1 FP/patient
Combination of 86 features

- Geometrical features of spicules: 12
- Haralick’s and Laws’ texture features, fractal dimension: 25
- Angular spread, entropy: 15
- Haralick’s measures with angle cooccurrence matrices: 28
- Statistical measures of angular dispersion and correlation: 6
- Feature selection with stepwise logistic regression
- Bayesian classifier with leave-one-patient-out validation: 80% sensitivity at 3.7 FP/patient
Reduction of false positives
Reduction of false positives
“Our methods can detect early signs of breast cancer 15 months ahead of the time of clinical diagnosis with a sensitivity of 80% with fewer than 4 false positives per patient”

- **Further work required:**
 - Detection of sites of architectural distortion at higher sensitivity and lower false-positive rates
 - Application to direct digital mammograms and breast tomosynthesis images
Thank You!

- Natural Sciences and Engineering Research Council (NSERC) of Canada
- Alberta Heritage Foundation for Medical Research
- Alberta and Canadian Breast Cancer Foundation
- Screen Test: Alberta Program for the Early Detection of Breast Cancer
- Indian Institute of Technology Kharagpur
- Shastri Indo-Canadian Institute
- University of Calgary International Grants Committee
- Department of Information Technology, Government of India
- My collaborators and students:
 Dr. J.E.L. Desautels, N. Mudigonda, H. Alto, F.J. Ayres, S. Banik,
 S. Prajna, J. Chakraborty, Dr. S. Mukhopadhyay

http://people.ucalgary.ca/~ranga/