1. [5 marks] Answer true or false to each of the questions below. No explanations are necessary; just state your answer.

(a) Every regular language is accepted by some DFA.
TRUE by definition.

(b) There exist languages that are accepted by some NFA, but by no DFA.
FALSE; see Slide 7 of Lecture 6.

(c) The language $L = \{0\}^*$ consisting of the strings $\varepsilon, 0, 00, 000, 0000 \ldots$ is regular.
TRUE; a DFA that accepts L consists of one final state with a transition on input 0 to itself.

(d) Every finite language is regular.
TRUE; you can easily design an NFA with a separate transition path for every string in the language.

(e) The language $L = \{w \in \{0, 1\}^* \mid w \text{ has even length}\}$ is regular.
TRUE; a DFA accepting L consists of 2 states, where the starting state q_0 is a final state, the other state q_1 is not final, and there are transitions from q_0 to q_1 and from q_1 to q_0 on inputs 0 and 1.
2. Consider the DFA M, defined over the alphabet $\Sigma = \{0, 1\}$, with the following transition diagram.

(a) \[3 \text{ marks}\] Give a formal description of M.

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{0, 1\}$
- Start state is q_0
- $F = \{q_0\}$

(b) \[2 \text{ marks}\] Write down the sequence of states that M assumes on input string $w = 11010$. Does M accept w?

$q_0, q_0, q_0, q_1, q_1, q_2$; not accepted.

(c) \[2 \text{ marks}\] Write down the sequence of states that M assumes on input string $w = 0110010$. Does M accept w?

$q_0, q_1, q_1, q_1, q_2, q_3, q_3, q_0$; accepted

(d) \[3 \text{ marks}\] Give a set-theoretic description of the language of M. You only need to state your result, no proof is necessary.

$L = \{w \in \{0, 1\}^* \mid \text{the number of 0's in } w \text{ is a multiple of 4}\}$
3. (a) [5 marks] Give a state diagram of an NFA M that accepts the language

$$L = \{ w \mid w \text{ contains the substring } 00 \text{ or the substring } 010 \}$$

defined over the alphabet $\Sigma = \{0, 1\}$, and using at most 4 states.
We offer two solutions:

(b) [5 marks] In this question, you will provide a partial proof of correctness of your NFA of part (a). Prove that

$$L \subseteq L(M),$$

where M is your NFA of part (a). (You need not prove $L(M) \subseteq L$.)

We prove this inclusion for our first NFA M above. To that end, let $w \in L$. Then w is of the form $w = x00y$ or $w = x010y$ with $x, y \in \{0, 1\}^*$ (x and/or y may be empty). We combine these two cases by writing $w = x0z0y$ where $z = \varepsilon$ or $z = 1$. The following sequence of transitions accepts w:

- Remain in state q_0 throughout processing the symbols in x (this includes the case $x = \varepsilon$);
- Transition from q_0 to q_1 when processing the 0 following x;
- Transition from q_1 to q_2 when processing z;
- Transition from q_2 to q_3 when processing the 0 following z;
- Remain in state q_3 throughout processing the symbols in y (includes the case $y = \varepsilon$).

Since M ends in state q_3 which is a final state, M accepts w, so $w \in L(M)$.