Corrigendum to the proof of Lemma 4.2 of ”Ideal arithmetic and infrastructure in purely cubic function fields”

R. Scheidler

Lemma 4.2 Let \(\mathfrak{a} = [L(a), \mu, \nu] \) be a primitive ideal where \(\mu = m_0 + m_1 \rho + m_2 \omega, \) \(\nu = n_0 + n_1 \rho + n_2 \omega \) with \(m_0, m_1, m_2, n_0, n_1, n_2 \in \mathbb{k}[x] \). Then \(\mathfrak{a} \) has a triangular basis which can be obtained as follows. Set

\[
\begin{align*}
 s'' &= \gcd(m_2, n_2), \\
 s' &= (m_1 n_2 - n_1 m_2)/s'', \\
 s &= L(a),
\end{align*}
\]

and let \(a', b', t \in \mathbb{k}[x] \) satisfy \(a' m_2 + b' n_2 = s'' \) and \(s' t \equiv a' m_1 + b' n_1 \pmod{s''} \). Set \(a = a' - t n_2/s'' \), \(b = b' + t m_2/s'' \),

\[
\begin{align*}
 u &= \frac{m_0 n_2 - n_0 m_2}{s''}, \\
 v &= \frac{a m_0 + b n_0}{s''}, \\
 w &= \frac{a m_1 + b n_1}{s''}.
\end{align*}
\]

Then \(\{s, s'(u + \rho), s''(v + w \rho + \omega)\} \) is a triangular basis of \(\mathfrak{a} \).

Proof: Let \(U = (m_0 n_2 - n_0 m_2)/s'', \) \(V = a' m_0 + b' n_0, \) and \(W = a' m_1 + b' n_1. \) Then \(U, V, W \in \mathbb{k}[x], \) and if \(\alpha = (n_2 \rho - m_2 \nu)/s'' \) and \(\beta = a' \mu + b' \nu = V + W \rho + s'' \omega, \) then \(\{s, \alpha, \beta\} \) is a basis of \(\mathfrak{a} \).

Since \(\alpha \rho, \alpha \omega, \beta \rho, \beta \omega \in \mathfrak{a}, \) each of these four elements can be written as a \(k[x]\)-linear combination of \(\alpha \) and \(\beta. \) By considering the coefficient of \(\omega \) in these linear combinations, we see that \(s'' \mid H s', \) \(s'' \mid U, \) \(s'' \mid WH, \) and \(s'' \mid V. \) Moreover, by writing \(\alpha \rho = A \alpha + B \beta \) with \(A, B \in \mathbb{k}[x] \) and considering the coefficients of \(\omega \) and \(\rho, \) we obtain \(B = H s'/s'' \) and \(U = A s' + BW = s'(A + HW/s''). \) It follows that \(s' \mid U, \) implying \(u = U/s' \in k[x]. \)

We claim that \(\gcd(s', s'') = 1. \) To that end, write \(\beta \rho = C \rho + E \omega \) with \(C, E \in k[x]. \) Considering again the coefficients of \(\omega \) and \(\rho \) in \(\beta \rho \) shows that \(E = HW/s'' \) and \(V = Cs' + EW. \) Let \(d = \gcd(s', s''). \) Then \(d \mid s' \mid U \) and \(d \mid s'' \mid V. \) Furthermore, \(N(\mathfrak{a}) = ss'' \) implies \(s' s''/s \mid s, \) so \(d \mid s. \) Thus, \(\gcd(d, W) = 1 \) since \(\mathfrak{a} \) is primitive. Then \(s' \mid V - EW \) yields \(d \mid EW, \) and hence \(d \mid E = HW/s''. \) Then \(d^2 \mid ds'' \mid HW, \) so \(d \mid H. \) Since \(H \) is squarefree, we must have \(d = 1. \)

It follows that \(t \) as defined in the Lemma exists, and \(W \equiv s' t \pmod{s''}. \) Set \(\gamma = \beta - t \alpha. \) Then \(\{s, \alpha, \gamma\} \) is a basis of \(\mathfrak{a}, \) \(\alpha = s'(u + \rho), s'' \mid \gamma, \) and a simple computation shows that \(\gamma = s''(v + w \rho + \omega). \) \hfill \Box