University of Calgary
UofC Navigation

Labeled calculi and finite-valued logics

This website has moved!

You are looking at an archived page. The website has moved to


Studia Logica 61 (1998) 7–33
(with Matthias Baaz, Christian G. Fermüller, and Gernot Salzer)


A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite­valued logic if the labels are interpreted as sets of truth values (sets­as­signs). Furthermore, it is shown that any finite­valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the number of truth values, and it is shown that this bound is tight.


Radim Belohlávek (Mathematical Reviews 99m:03043)

Download from SpringerLink


Download preprint

Download PostScript