

Introducing Automated Environment Configuration Testing in an Industrial Setting
Caryna Pinheiro

MCIT Solutions Inc.
Calgary, Canada

caryna.pinheiro@gmail.com

Vahid Garousi*, Frank Maurer+, Jonathan Sillito+
*: Department of Electrical and Computer Engineering

+: Department of Computer Science
University of Calgary

{vgarousi,frank.maurer,sillito}@ucalgary.ca

Abstract— This paper presents an automated environment
configuration testing strategy developed as part of an action
research project to deal with issues of staging environment
instability in a large organization. We demonstrate how a suite
of automated environment configuration tests provided an
unobtrusive way to verify the hospitability of staging
environments, decreased the time wasted on manual
troubleshooting of environmental issues, and consolidated
software configuration management information. The test
strategy was also greatly welcomed by upper-level management
and is now being expanded to other parts of the organization.

Keywords – Environment configuration, Software configuration
management, staging, software development lifecycle, test
automation, test strategy, action research.

I. INTRODUCTION
Modern IT ecosystems have a complex combination of
hardware, software, middleware, components, applications,
organizational culture, practices, and application lifecycles
[1]. Staging environments are part of the release lifecycle of
many complex software systems under development. They
are used to assemble, test and review new versions of a
software system before it is deployed in the field. During
staging, software applications are tested in “production-like”
server environments that integrate code from all existing
applications in one organization [2, 3].

During deployment to staging environments, developers
start to find out about the configurations needed in order to
successfully run the deployed application. Dependencies to
other software applications and infrastructural components
are also identified. In this paper, we define software
environment configurations as:
• Settings that must be applied to servers
• Application-related settings (e.g., access permission)

stored in files or databases
• Third party shared services and components.

Deployment to staging environments – and later to the
production environment – can be either manual or
automated. In complex IT ecosystems, it is hard to
successfully automate deployments to encompass all of the
outer dependencies on external components, systems from
other project teams, and infrastructural configurations [1].

In large organizations that have multiple concurrent
software projects, it is common to have project teams with
different release schedules sharing the same physical
resources for their staging environments. It is also common

to have a combination of teams with their own automated
deployment scripts and manual deployments of legacy
applications [1]. Such diversity in deployment approaches
and timelines often lead to instabilities and rework effort in
staging environments’ configurations.

Strict vigilance of configuration changes may reduce the
number and frequency of changes introduced into staging
environment. But this often creates bottlenecks for the quick
delivery of iterations and necessary fixes for project teams.
There is also a problem of governance. The fine line between
enterprise-wide configuration management of staging
environments and the configuration needed by individual
project teams is usually a grey one. In our experience based
on several large-scale industrial projects, configuration
management is often shrunken to a source control repository
that includes documentation of how to set up a known
baseline for an application system.

The challenges that we have faced in an industrial setting
are the goals for the work reported in this paper: (1) How can
we validate that the environment configurations, our software
application depends on, have been correctly applied to
staging environments? (2) When our application starts failing
after other teams deploy to the same staging environment,
how can we quickly validate that this is not due to missing or
changed configurations? (3) How can we provide a pro-
active way to consolidate configuration management
information?

In this paper, we present an action research and
development project conducted to address the above issues
with staging environment instability. We demonstrate how a
carefully-designed automated suite of environment
configuration tests can provide an unobtrusive way to verify
the hospitability of staging environments, consolidate
configuration information and external dependencies, and also
decrease the cost associated with manual troubleshooting of
environmental issues.

The remainder of this article is structured as follows. We
introduce our guiding research methodology in Section II.
The problem domain is discussed in Section III. The existing
literature is discussed in Section IV. Our test strategy is
presented in Section V. Lessons learned are shared in Section
VI. We conclude this paper in Section VII.

II. GUIDING RESEARCH METHODOLOGY
Action research has been increasingly used in the fields of
information systems [4]. It looks at combining theory and
practice to solve an existing issue. The work of Davison et al.

[5] provides a concise set of principles and guidelines for
researchers looking for ways to combine theory and practice
in an industrial setting using an action research method called
Canonical Action Research (CAR). The CAR model has five
encompassing principles: (1) the creation of a researcher-
client agreement – signed in August of 2007; (2) the cyclical
process model with five distinct phases: diagnosis (discussed
in Section III), action planning, intervention (action taking),
evaluation, and reflection (all discussed in Section V); (3) the
adoption of theory; (4) the implementation of change through
action; and (5) learning through reflection.

During action planning, we further investigated the issues
related to environment instability. Informal question &
answer sessions were set up with team members. The
questions were structured to ask probing questions and
concrete examples [6]. The testing techniques used during the
intervention and evaluation steps are discussed on Section V.

III. PROBLEM DOMAIN
This section describes the diagnosis phase of our action
research project.

A. Context
The IT department of our industrial partner (based in
Calgary, Alberta, Canada) has over 190 professionals. This
paper studies projects from the largest IT Program in this
agency with approximately 50 IT professionals. This
agency’s IT focus is to develop, enhance and maintain
contemporary systems to enable timely responses to requests
from the oil & gas industry. In 2008, there were a total of 18
different concurrent software projects with budgets ranging
from $0.5 to $1.5 million dollars.

The overall architecture for hosted applications is
illustrated in Figure 1. Servers are clustered for redundancy.
The organization’s projects are developed on a backbone of
four staging environments: development (DEV), test (TST),
acceptance (ACT), and production PRD. The environments
are described in detail next.

Construction iterations lead to completed development
activities built and delivered to the DEV environment and
code ready and tested in an integrated environment (TST),
which are constituted of many virtual servers. A production
release includes many iterations. Once a group of iterations
leads to a candidate release, the completed work must be
deployed and tested in real staging (ACT), and if approved by
all stakeholders, it then becomes a production release (PRD).

B. Staging Environment Instability
All in-house development teams share the staging servers.

Software applications have to be deployed on several staging
environments during different milestones of the release
lifecycle. Changes to server configurations made by one team
have the potential to impact other teams. This situation
certainly happened very frequently in the organization under
study.

On many occasions, successfully deployed applications
started to fail and teams were not made aware of what
actually changed in the environment. There was no formal

ownership of non-hardware environment configurations. As a
result, teams had to constantly and manually verify server
configurations to ensure that all different environments were
set-up correctly for their applications.

Figure 1. Overall architecture of hosted applications.

The entire situation was almost ad-hoc, caused last-
minute surprises, and chaos in many occasions. “It worked
for me yesterday, but I don’t know why it doesn't work
today!” This manual check of configurations was also very
time consuming and frustrating. The company had looked for
best practices out there to deal with the staging environment
instability problem, however no good best practice was
found. While using virtualized servers for each individual
project would alleviate some of these instabilities, it would
introduce an extra layer of complexity to test integrated
systems. Existing problems with virtualization and n-tier
applications using COM+ and other licensed third party tools
[7] are also another barrier to many of the legacy applications
in house. Virtualization also incurs a cost to performance,
due to extra process boundaries to serialize data to and from.

In the presence of automated deployment scripts, one may
suggest that re-deploying the application would be an easier
way to solve these issues. However, automatic deployments
still require core shared services (e.g., COM+, and Internet
Information Services), and application pools to be shut down,
introducing disruptions to other teams that also have tight
schedules and cannot afford constant downtimes. While we
highly believe and support automated deployments, in the
context of multiple on-going software projects, they simply
overwrite the existing configurations without revealing which
ones were incorrectly configured or changed by other teams.
This becomes an environment where “the last team to deploy
wins.” And it is our experience that automated deployment
scripts to not encompass all configurations needed in order to
successfully host an enterprise n-tier software application.
Automated deployment scripts also require expertise and
knowledge to understand. The three projects under study had
created semi-automated build scripts, consisting of Microsoft
Installer files (msi) or simple Visual Build scripts. The word
“semi-automated” is used to reflect that these scripts do not
pull the source code from any source control repository.
Instead these scripts copied existing compiled assemblies and
files to desired locations. They also did not set server

configurations, which were left to be done manually. It is fair
to say that deployment to the staging environments was
mostly manual, done by a person following a set of written
step-by-step instructions. In many occasions, especially after
deployments, parts of the application would simply not
function due to missed or changed configurations in the
servers.

At a later stage, a fulltime build automation expert was
hired. The build scripts were enhanced to include core
environment configurations, but the support for such
configuration is limited in many commercially available tools
(such as Visual Build and NAnt). Although further
automation of the deployment process was helpful, it could
not completely address the situation as many project teams
did not have the budget or expertise to build automated
deployments. The bottom line is that servers were still being
changed manually.

Almost all system were being developed using object-
oriented design and analysis methodologies. Subsystems
were created to foster reusability. But such reusability creates
dependencies between external objects, services, and
database objects, amongst others. Project teams become
consumers of components that are not deployed and
configured by them. The delivery timelines of reused
components may or may not be in-line with the consumers. It
becomes important to validate that dependencies are
addressed in staging environments.

IV. LITERATURE REVIEW
Lents and Bleizeffer [1] describe an ethnographical study of
eight enterprises to understand the sources of IT environment
complexity in the design of middleware software. They
focused on organizations, user roles, and technologies
involved in the life-cycle of applications. The authors found
that software deployments differ depending on the
environment being targeted. “Deployment into unit test
environments is usually informal while deployment into
production is a highly rigorous process.”

These authors [1] found that although deployment was
typically done in an automated fashion, most enterprises used
ad-hoc methods for deploying small changes. Deployment
responsibilities also shift to the hands of external groups (such
as change control) for higher staging environments. A point
of complexity identified was the supporting software that
surrounds software applications. Dependencies on databases,
transaction and messaging servers, clients, and source control
must be integrated well with applications. The authors did not
provide suggestions on how to eliminate this bottleneck;
instead they focused on design considerations to minimize
complexity.

Ambler talks about the use of “sandboxes” as being an
Agile best practice [8]. Sandboxes are integration staging
environments that become more controlled as they move up
in the release lifecycle. But still it is easy to automatically
detect the issues when they occur using sandboxes.

Beck, the original author of eXtreme Programming (XP),
advocates that software needs to be integrated and tested early
and often [9]. Continuous integration paired with a suite of

NUnit tests are used to achieve this goal. Eckstein [11] states
that each Agile team must have someone capable and
responsible for integration and configuration management.
Suggestions to support configuration management include
source control versioning and baselining with continuous
integration tools. But as we mentioned in Section III,
automation alone does not resolve the underlying issue in
contexts of multiple n-tier integrated project teams with
different schedules and deployment practices.

A taxonomy of existing SCM systems by Conradi and
Westfechtel [5] focus on the inner processes of source control
versioning models. To the best of our knowledge, we were
unable to find any related literature that addresses the
automated verification of staging environment configuration
as a way to consolidate configurations.

V. TEST STRATEGY: ENVIRONMENT CONFIGURATION
TESTING

A. Action Planning
To address our first goal - (1) how can we validate that the

environment configurations our software application depends
on have been correctly applied to staging environments - we
designed a test strategy that ensures certain properties of the
deployment environments. Our automated test strategy has
the following aspects: (1) definition of a meaningful and
effective test adequacy criterion, (2) test oracle, (3) choice of
test tool, and (4) an error seeding (mutation) technique.
Test adequacy criterion: Well-known black-box or white-
box test adequacy criteria (e.g., line or decision coverage) do
not fit the non-functional nature of our problem domain (i.e.,
staging instabilities). Thus, a fault-based testing criterion
proved to be the best fit. A set of most common faults were
identified by the interviewed developers and the lead tester.
As a result, the initial test suite needed to cover:
• Folder permissions
• Database (SQL Server) stored procedures permissions
• Availability of required services
• COM+ DLL registration and identification
• Internet Information Services (IIS) settings
• Network groups, machine users, and machine groups
• Database (SQL server) users and roles memberships.
Test Oracle: Before our involvement, all teams were
required to maintain an up-to-date “Disaster Recovery Plan
System Manual” (DRP). This document was one of the few
documents kept relatively up-to-date in source control due to
auditing requirements.

This manual provides a high-level explanation of how to
configure each individual application. The DRP did not list
some required configurations, e.g., required database
permissions, and folder permissions. Outdated or missing
configurations were often gathered from deployed server
configurations. External dependencies, such as services,
stored procedures, and database users were gathered through
code inspections.
Chosen test automation tool: NUnit version 2.2.6 was
chosen as the test tool. NUnit was already an approved tool

for testing in the company, which meant that a long
bureaucratic approval process from the technical enterprise
team could be avoided. It was important to follow the path of
least resistance due to existing contextual antipathy of
management towards test automation.
Error seeding (mutation): We planned to manually inject
defects into the configurations (during mutation testing only)
to assess the fault detection effectiveness of the test suite. For
example, deleting a folder permission, or stopping a service.
The approach and results are presented in Subsection C.

B. Action Taking
In this paper, we refer to test fixtures as parts of the code

needed in order to run the four phases of a test case in the
NUnit framework (i.e., set up, exercise, verify, and tear
down). Test cases were grouped into ten test fixtures based
on the type of configuration they were trying to validate: (1)
folder permissions, (2) database stored procedures
permissions, (3) services availability, (4) COM+, (5)
universal data links, (6) web configuration files, (7) IIS
settings, (8) network and machine user membership, (9)
global assembly cache, and (10) database security. These test
fixtures were coded with generic private functions that could
“exercise” a predefined behavior. For example, check if a
folder has been granted a determined set of permissions. This
generic function takes as input a folder path, and the
permission set.

Test cases executing a call to these generic functions were
passing in specific test inputs and performing assertions to
“verify” that the return values match the expected values. Test
inputs and expected return values were declaratively specified
in XML files loaded during the test “set up.”

Configurations are environment specific. They refer to
different server paths, different domain accounts, and
different namespaces for components and services. Before
running, a test case reads an environment ID. Test inputs and
expected values (oracle) are grouped by environment ID in
each test-fixture-specific XML file. A “helper” class was
created to assist in reading these declarative test inputs
(making extensive use of the XPath, XML Path Language).
This provided an easy way to point the test suite to the
desirable environment.

As an example, a folder used for downloading
attachments in a web application is given a tag (File
name=TAG). This folder has a path in the Development
staging environment (DEV) and it needs modify permissions
granted to a network user called userDEV. The folder path
acts as input while the permission and user pair are the
expected values (oracle) for the test case execution. A folder
that serves the same purpose in the Production environment
(PROD) is given the same tag (File name=TAG). In PROD,
this folder has a different path and it needs modify
permissions granted to a different network user called
userPROD.

Without the declarative XML inputs and expected values,
we would need to code one test cases per staging
environment (in our context at least five) to test that such

download folder (TAG) has the correct permissions.
Functionally speaking, the code executed to check the folder
permission is the same for different test cases (a download
folder, a temporary folder). We simply need a different set of
test input/oracle for the different folders and different staging
environments. This declarative XML approach also allowed
us to create a living catalog of the most important
environment configurations needed to run our applications –
which addressed our third research goal – (3) a way to
consolidate configuration management information.

Figure 2 shows an
example of the XML
input (sensitive data
has been either
replaced by “xxx”).
The expectedValue
node contains the
expected result for the
test case execution and
is used for assertions in
NUnit.

C. Preliminary
Evaluation
After the test suites

were implemented, we
manually changed
(mutated) the
environment and
checked if our tests
would find all
changes. Table II
illustrates a subset of
the mutants introduced and the results of the mutation
testing. Our test cases found (killed) all the mutants (seeded
faults) for every execution.

Table II. Example of mutants
Category Mutant Generation (Error seeding)

Folder Permissions Using windows explorer, we removed
or changed permissions.

SQL Server stored
procedures
permissions

Using Microsoft SQL Server
Management Studio, we removed
permissions.

Availability of
required services

Using Microsoft Computer
Management Console, we stopped,
disabled, or paused the services.

COM+ DLL
registration and
identification

Using Microsoft Component Services,
we deleted or disabled the components.
Also we changed the identities being
tested.

After our mutation evaluation, we executed our test suite
against the development staging environment (the most
instable of the staging environments). The test suite
successfully found at least half dozen missing permissions
for stored procedures and file system folders in the first day
of use. Such discovery would have taken many man-hours to
diagnosed if done manually, and caused many hours of down
time to the systems that needed these permissions. In

Figure 2 - Example of the XML test
case inputs and expected output.

summary, the test suite proved to be effective in detecting
both seeded and real environment configuration issues.

D. Periodic Execution of the Automated Tests
It is important that tests are run frequently so that errors

are caught in a timely fashion. It is also important that test
execution be made visible to appropriate stakeholders. The
lack of frequency and visibility is seems as one of the main
root causes for test automation failures [10, 11]. Beck
suggests that someone in the team must be responsible for
executing tests frequently and for publishing the results to all
team members [9]. In order to address our second goal - (2) if
our application starts failing after other teams deploy to the
same staging environment, how can we quickly validate that
this is not due to missing or changed configurations – and to
address the above concerns, we decided to automate the
execution of the test suites on a scheduled basis, to
automatically publish the results in the intranet and to pro-
actively send emails to interested parties after each test
execution.

NUnit provides console commands to execute test suites
and to export test run results into XML files. A batch file was
created to call the environment configuration test suite.
Microsoft Task Scheduler was used to execute this batch file
at 6:00 AM.

To provide an easier, more readable presentation of the
results, an XSL style sheet was generated to display the
results in an “Environment Forecast” webpage.

A “sunny” forecast indicates that all tests are passing. A
“mostly sunny” with occasional clouds forecast indicates that
less than 25% are failing. A “cloudy’ forest indicates that 25-
50% are failing. Finally, a “stormy” weather is displayed if
more than 50% of the tests are failing. To provide further
information, data logged during tests (such as the parameters
being tested) is exported to a text file. A link to this detailed
log file is displayed at the bottom of the “Environment
Forecast” web page. Once the test run was completed, e-
mails were sent with a link to the results webpage to
interested individuals (project lead, testing lead, and
developers).

At first, we only had access to run the tests against the
development and testing staging environments. We executed
these tests for a period of 6 weeks. The test results provided
improvements to the following areas:
 Database security: many stored procedures had the

incorrect level of permission. This was brought to the
attention of the Enterprise Architecture team which was
asked to revisit the security models and tighten up
permissions.

 Network Folder security: many folders had more
permissions than necessary in the development and test
environments, which resulted in certain problems to only
appear in higher staging environments, where security
was more strictly enforced.

 Visibility into changes in database administrators: stored
procedures permissions seemed to “go missing” every
once in a while, and system roles get regrouped without
teams being properly notified.

The long term affect of the configuration tests is discussed in
the following section.

E. Technical Challenges And Impact
After seeing the benefits of the testing suites on the lower

level staging environments, we inquired about scheduling
them to run against higher staging environments. The team
responsible for granting such permissions (enterprise testing)
was at first resistant to give any special permissions to run
these tests in higher staging environments.

Because NUnit was used as the test harness tool, the
enterprise testing team first assumed the tests were developer
unit tests, thus unfit to be on-going in more secured
environments. To clarify this misconception, and to get their
support going forward, we booked meetings with the
enterprise team, inviting the management group as well to
present the test suite and automation strategy. Members of
that team were also included in the daily test-run e-mail
notifications.

After the presentation, managers and the enterprise testing
team became interested to see the source code. Access to the
source code was granted to them. Soon after the demos, this
enterprise team assigned a developer to validate the test suite
in order to give the permission to run it in higher staging
environments. During this review, the developer abstracted
the XML declarative input approach and adapted our test suite
to be able to run tests from multiple projects. We gained
approval to run the tests in higher staging environments while
the enterprise architectural team enforced that all other in-
house projects specify their environment configurations in
XML to also run in this test suite. These tests are now
scheduled to run three times a day in all-staging
environments, including Production. They can also be run on-
demand by a group of users that have been granted special
permissions, including the first author of this article.

A verbatim quote from an e-mail sent by the test lead
states that “before the configuration tests: One or more
testing environments would be unstable each day causing
delays in development and testing. During a period of 3
months, environment outages were tracked and over 50 hours
of development and testing time were lost and business
confidence in the environments/systems was very low. In
addition, identifying and addressing the cause of the outage
required 2 to 5 people to get involved to search for and
address the issue. The primary root cause was very difficult to
determine. After configuration test: The suite initially
focused on monitoring and "flagging" environment
configuration changes. The tests were executed on a daily
basis and on command. The impact of these tests is
significant. Problem root cause identification is immediately
available and resolution activities are focused (1 - 2 people)
and usually are corrected in minutes. It was identified that
97% of all instability problems were associated with
environment configuration and database issues/changes (not
system code/functionality). Test environment downtime has
been reduced to 0 - 10 minutes per week. Most importantly,
overall organization confidence in the test environments has

significantly increased - to the point where development and
test results are trusted and used for benchmarking purposes.”

VI. LESSONS-LEARNED
NUnit proved to be an effective, flexible and easy to use

testing harness for the execution of tests other than traditional
unit tests.

By running environment configuration tests on an on-
going basis, the root causes of environment instability and
configuration problem areas started to disappear. Conflicting
configurations were found during test executions.
Dependencies on external components, such as services and
databases were validated without manual intervention. Teams
had to work together to ensure suitable resolutions to
conflicts. Manual deployments still caused issues, but these
issues were found in a timely manner, making individuals
involved in manual deployments more cautions of changes to
shared configurations.

The environment configuration necessary to run
applications is no longer hidden in long documents in source
control, or in deployment scripts. They are visible and readily
available in a suite of automated tests. To provide quantitative
insights to the usefulness of the automated build verification
testing (BVT), some before- and after-BVT measures are
provided below.

Before BVT After BVT
• Over 50 hours of

downtime in 3
months

• Very low confidence
• Outage required 2 to

5 people
• Primary root cause

was very difficult to
determine.

• 0 - 10 minutes of downtime
per week

• 97% of all instability problems
were associated with
environment configuration

• Focused (1 - 2 people) and
corrected in minutes

• Problem root cause
identification is immediately
available.

Last but not least, based on our experience, we make the
following recommendations for testing practitioners wanting
to introduce configuration testing practices:

Expect resistance. The truth is that automated testing
requires special permissions for higher level staging
environments. So admit it, get it working on a local
environment where you do have enough security privileges
and plan to do some convincing for getting appropriate
privileges on higher staging environments. Don’t take this
resistance personally. But instead, nicely present the benefits
of your tests to those being skeptical. They will see that it
will actually help them do their job better too.

Keep maintainability in mind. This is one of the causes of
why automated tests get abandoned by many teams [9].
Make it easy to add new test cases to your suite without
having to change or redeploy code.

Keep it simple and use free tools. Create a simple testing
strategy that leans on existing free test tools, creating generic
test drivers that use declarative descriptions as test case
inputs for future re-use.

Automate as much as possible. In addition to test
automation, automate the test execution as well preferably

using existing OS tools, such as Microsoft Task Scheduler
and expose the test execution results in an easy to access
location, such as a simple website.

VII. CONCLUSION
The introduction of a suite of automated environment
configuration tests that verify the environment on demand
has helped us identify many deployment dependencies. It has
also assisted several of our partner teams resolve
configuration issues in staging environments in a timely
manner. It also abstracted environment configuration
management into a live and evolving test suite that shows
failure and it is easily maintainable. The creation of a simple
test strategy that leaned on existing free test tools, with
generic test drivers that use declarative descriptions as test
case inputs enabled future re-use. This reuse escalated the
use of this test strategy to an enterprise testing framework,
proving the need and usefulness of the techniques we
implemented.

ACKNOWLEDGEMENTS
The authors would like to thank Jim King and Bryan Schultz
for their support.

REFERENCS
[1] J. L. Lentz and T. M. Bleizeffer, "IT ecosystems: evolved

complexity and unintelligent design," Proc. of 2007 Symposium
on Computer Human Interaction for the Management of
information Technology, 2007.

[2] Disruptive Library Technology Jester, "Traditional
Development/Integration/Staging/Production Practice for
Software Development," On-line:
http://dltj.org/article/software-development-practice,
Downloaded on Sept. 2009.

[3] MSDN, "What is the Staging Environment?," On-line:
http://msdn.microsoft.com/en-us/library/ms942990.aspx,
Downloaded on Sept. 2009.

[4] H. D. Frederiksen and L. Mathiassen, "A Contextual Approach
to Improving Software Metric Practices," IEEE Transactions on
Engineering Management, vol. 55, no. 4, pp. 602–616, 2008.

[5] R. M. Davison, M. G. Martinsons, and N. Koch, "Principles of
Canonical Action Research," Information Systems Journal, vol.
14, no. 1, pp. 65–89, 2004.

[6] The question man, On-line:
http://www.ajr.org/article_printable.asp?id=676, Downloaded:
July 2009.

[7] Microsoft App-V team blog, "On-line:
http://blogs.technet.com/softgrid/archive/2007/09/27/list-of-
applications-that-can-be-virtualized.aspx," Downloaded: March
21, 2010.

[8] S. Ambler, "Development Sandboxes: An Agile “Best Practice”
" On-line http://www.agiledata.org/essays/sandboxes.html,
Downloaded on Sept. 2009.

[9] K. Beck, Extreme Programming: Addison-Wesley 2004.
[10] S. Berner, R. Weber, and R. K. Keller, "Observations and

lessons learned from automated testing," Proc of the Int
Conference on Software Engineering, pp. 571–579, 2005.

[11] M. Fewster and D. Graham, Software Test Automation:
ACM Press, 1999.

