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Intro: Aim of the Talk

This talk is devoted to the pricing of variance and volatility swaps
in energy market. We found explicit variance swap formula and
closed form volatility swap formula (using Brockhaus-Long ap-
proximation) for energy asset with stochastic volatility that fol-
lows continuous-time GARCH (1,1) model (mean-reverting) (or
Pilipović one-factor model). A numerical example is presented
as well.



Intro: Energy Commodities

Commodities are emerging as an asset class in their own. The
range of products offered to investors range from exchange traded
funds (ETFs) to sophisticated products including principal pro-
tected structured notes on individual commodities or baskets of
commodities and commodity range-accrual or varinace swap.

More and more institutional investors are including commodities
in their asset allocation mix and hedge funds are also increasingly
active players in commodities. Example: Amaranth Advisors lost
USD 6 billion during September 2006 from trading natural gas
futures contracts, leading to the fund’s demise.



Intro: Energy Commodities

Concurrent with these developments, a number of recent papers
have examined the risk and return characteristics of investments
in individual commodity futures or commodity indices composed
of baskets of commodity futures. See, e.g., Erb and Harvey
(2006), Gorton and Rouwenhorst (2006), Ibbotson (2006), Kan
and Oomen (2007).

However, since all but the most plain-vanilla investments contain
an exposure to volatility, it is equally important for investors
to understand the risk and return characteristics of commodity
volatilities.



Intro: Energy Commodities

Our focus on energy commodities derives from two resons:

1) energy is the most important commodity sector, and crude
oil and natural gas constitute the largest components of the two
most widely tracked commodity indices: the Standard & Poors
Goldman Sachs Commodity Index (S&P GSCI) and the Dow
Jones-AIG Commodity Index (DJ-AIGCI).

2) existence of a liquid options market: crude oil and natural
gas indeed have the deepest and most liquid options marketss
among all commodities.

The idea is to use variance (or volatility) swaps on futures con-
tracts.



Intro: Energy Commodities

At maturity, a variance swap pays off the difference between the
realized variance of the futures contract over the life of the swap
and the fixed variance swap rate.

And since a variance swap has zero net market value at initia-
tion, absence of arbitrage implies that the fixed variance swap
rate equals to conditional risk-neutral expectation of the realized
variance over the life of swap.

Therefore, e.g., the time-series average of the payoff and/or
excess return on a variance swap is a measure of the variance
risk premium.



Intro: Energy Commodities

Variance risk premia in energy commodities, crude oil and natural
gas, has been considered by A. Trolle and E. Schwartz (2009).

The same methodology as in Trolle & Schwartz (2009) was used
by Carr & Wu (2009) in their study of equity variance risk premia.
The idea was to use variance swaps on futures contracts.



Intro: Energy Commodities

The study in Trolle&Schwartz (2009) is based on daily data
from January 2, 1996 until November 30, 2006-a total of 2750
business days. The source of the data is NYMEX.

Trolle & Schwartz (2009) found that:



Intro: Energy Commodities

1) the average variance risk premia are negative for both energy
commodities but more strongly statistically significant for crude
oil than for natural gas;

2) the natural gas variance risk premium (defined in dollars terms
or in return terms) is higher during the cold months of the year
(seasonality and peaks for natural gas variance during the cold
months of the year);

3) energy risk premia in dollar terms are time-varying and cor-
related with the level of the variance swap rate. In contrast,
energy variance risk premia in return terms, paerticularly in the
case of natural gas, are much less correlated with the varinace
swap rate.



Intro: Energy Commodities

The S&P GSCI is comprised of 24 commodities with the weight
of each commodity determined by their relative levels of world
production over the past five years.

The DJ-AIGCI is comprised of 19 commodities with the weight
of each component detrmined by liquidity and world production
values, with liquidity being the dominant factor.

Crude oil and natural gas are the largest components in both
indices. In 2007, their weight were 51.30% and 6.71%, respec-
tively, in the S&P GSCI and 13.88% and 11.03%, respectively,
in the DJ-AIGCI.



Intro: Energy Commodities-OVX Index

The Chicago Board Optiopns Exchange (CBOE) recently intro-
duced a Crude Oil Volatility Index (ticker symbol OVX).



Intro: Energy Commodities-OVX Index

Courtesy-CBOE:

http://www.cboe.com/micro/oilvix/introduction.aspx.



Intro: Energy Commodities-OVX Index

This index also measures the conditional risk-neutral expectation
of crude oil variance, but is computed from a cross-section of
listed options on the United States Oil Fund (USO), which tracks
the price of WTI as closely as possible. The CBOE Crude Oil
ETF Volatility Index (’Oil VIX’, Ticker - OVX) measures the
market’s expectation of 30-day volatility of crude oil prices by
applying the VIXR© methodology to United States Oil Fund, LP
(Ticker - USO) options spanning a wide range of strike prices
(see Figures below).





Intro: Energy Commodities-OVX Index

We have to notice that crude oil and natural gas trade in units
of 1,000 barrels and 10,000 British thermal units (mmBtu), re-
spectivel.

Price are quoted as US dollars and cents per barrel or mmBtu.



Intro: Energy Commodities-Models for Stochastic Volatil-
ity

We consider Ornstein-Uhlenbeck process for commodity asset
with stochastic volatility following continuous-time GARCH model
or Pilipovic (1998) one-factor model.

The classical stochastic process for the spot dynamics of com-
modity prices is given by the Schwartz’ model (1997). It is de-
fined as the exponential of an Ornstein-Uhlenbeck (OU) process,
and has become the standard model for energy prices possessing
mean-reverting features.



Intro: Energy Commodities-Models for Stochastic Volatil-
ity

In this talk, we consider a risky asset in energy market with
stochastic volatility following a mean-reverting stochastic pro-
cess satisfying the following SDE (continuous-time GARCH(1,1)
model):

dσ2(t) = a(L− σ2(t))dt+ γσ2(t)dWt,

where a is a speed of mean revertion, L is the mean reverting
level (or equilibrium level), γ is the volatility of volatility σ(t), Wt

is a standard Wiener process.



Intro: Energy Commodities-Method

Using a change of time method we find an explicit solution of this
equation and using this solution we are able to find the variance
and volatility swaps pricing formula under the physical measure.
Then, using the same argument, we find the option pricing for-
mula under risk-neutral measure. We applied Brockhaus-Long
(2000) approximation to find the value of volatility swap. A
numerical example is presented for ’toy’ data.



Intro: Energy Commodities-Motivation

The continuos-time GARCH model has also been explioted by
Javaheri, Wilmott and Haug (2002) to calculate volatility swap
for S&P500 index. They used PDE approach and mentioned
(page 8, sec. 3.3) that ’it would be interesting to use an al-
ternative method to calculate F (v, t) (= E[σ2(t)]) and the other
above quantities’.



Intro: Energy Commodities

This research exactly contains the alternative method, namely,
’change of time method’, to get varinace and volatility swaps.
The change of time method was also applied by Swishchuk
(2004) for pricing variance, volatility, covariance and correlation
swaps for Heston model. The first paper on pricing of commod-
ity contracts was published by Black (1976).



Mean-Reverting Stochastic Volatility Model (MRSVM)

In this section we introduce MRSVM and study some properties
of this model that we can use later for calculating variance and
volatility swaps.

Let (Ω,F ,Ft, P ) be a probability space with a sample space Ω, σ-
algebra of Borel sets F and probability P. The filtration Ft, t ∈
[0, T ], is the natural filtration of a standard Brownian motion
Wt, t ∈ [0, T ], such that FT = F .



Mean-Reverting Stochastic Volatility Model (MRSVM)

We consider a risky asset in energy market with stochastic volatil-
ity following a mean-reverting stochastic process the following
stochastic differential equation:

dσ2(t) = a(L− σ2(t))dt+ γσ2(t)dWt, (1)

where a > 0 is a speed (or ’strength’) of mean revertion, L > 0

is the mean reverting level (or equilibrium level, or long-term
mean), γ > 0 is the volatility of volatility σ(t), Wt is a standard
Wiener process.



Explicit Solution of MRSVM

Let

Vt := eat(σ2(t)− L). (2)

Then, from (2) and (1) we obtain

dVt = aeat(σ2(t)− L)dt+ eatdσ2(t) = γ(Vt + eatL)dWt. (3)



Explicit Solution of MRSVM

Using change of time approach to the equation (3) (see Ikeda
and Watanabe (1981) or Elliott (1982)) we obtain the following
solution of the equation (3)

Vt = σ2(0)− L+ W̃ (φ−1
t ),

or (see (2)),

σ2(t) = e−at[σ2(0)− L+ W̃ (φ−1
t )] + L, (4)

where W̃ (t) is an Ft-measurable standard one-dimensional Wiener
process, φ−1

t is an inverse function to φt :

φt = γ−2
∫ t

0
(σ2(0)− L+ W̃ (s) + eaφsL)−2ds. (5)



Explicit Solution of MRSVM

We note that

φ−1
t = γ2

∫ t

0
(σ2(0)− L+ W̃ (φ−1

t ) + easL)2ds, (6)

which follows from (5).



Some Properties of the Process W̃ (φ−1
t )

We note that process W̃ (φ−1
t ) is F̃t := F

φ−1
t
-measurable and F̃t-

martingale.

Then

EW̃ (φ−1
t ) = 0. (7)

Let’s calculate the second moment of W̃ (φ−1
t ) (see (6)):

EW̃2(φ−1
t ) = E < W̃ (φ−1

t ) >= Eφ−1
t

= γ2 ∫ t
0E(σ2(0)− L+ W̃ (φ−1

s ) + easL)2ds

= γ2[(σ2(0)− L)2t+ 2L(σ2(0)−L)(eat−1)
a + L2(e2at−1)

2a
+

∫ t
0EW̃

2(φ−1
s )ds].

(8)



Some Properties of the Process W̃ (φ−1
t )

From (8), solving this linear ordinary nonhomogeneous differen-
tial equation with respect to EW̃2(φ−1

t ),

dEW̃2(φ−1
t )

dt
= γ2[(σ2(0)−L)2+2L(σ2(0)−L)eat+L2e2at+EW̃2(φ−1

t )],

we obtain

EW̃2(φ−1
t ) = γ2[(σ2(0)− L)2eγ

2t−1
γ2 + 2L(σ2(0)−L)(eat−eγ2t)

a−γ2

+ L2(e2at−eγ2t)
2a−γ2 ].



Some Properties of the Process W̃ (φ−1
t )

We note, that

EW̃ (φ−1
s )W̃ (φ−1

t ) = γ2[(σ2(0)− L)2eγ
2(t∧s)−1
γ2

+ 2L(σ2(0)−L)(ea(t∧s)−eγ2(t∧s))
a−γ2 + L2(e2a(t∧)−eγ2(t∧s))

2a−γ2 ],

(9)

and the second moment for W̃2(φ−1
t ) above follows from (9).



Explicit Expression for the Process W̃ (φ−1
t )

It is turns out that we can find the explicit expression for the
process W̃ (φ−1

t ).

From the expression (see Section 3.1)

Vt = σ2(0)− L+ W̃ (φ−1
t ),

we have the following relationship between W (t) and W̃ (φ−1
t ) :

W̃ (φ−1
t ) = γ

∫ t

0
[S(0)− L+ Leat + W̃ (φ−1

s )]dW (t).



Explicit Expression for the Process W̃ (φ−1
t )

It is a linear SDE with respect to W̃ (φ−1
t ) and we can solve it

explicitly. The solution has the following look:

W̃ (φ−1
t ) = σ2(0)(eγW (t)−γ

2t
2 − 1)

+ L(1− eat) + aLeγW (t)−γ
2t
2

∫ t
0 e

ase−γW (s)+γ2s
2 ds.

(10)



Explicit Expression for the Process W̃ (φ−1
t )

It is easy to see from (10) that W̃ (φ−1
t ) can be presented in the

form of a linear combination of two zero-mean martingales m1(t)

and m2(t) :

W̃ (φ−1
t ) = m1(t) + Lm2(t),

where

m1(t) := σ2(0)(eγW (t)−γ
2t
2 − 1)

and

m2(t) = (1− eat) + aeγW (t)−γ
2t
2

∫ t

0
ease−γW (s)+γ2s

2 ds.



Explicit Expression for the Process W̃ (φ−1
t )

Indeed, process W̃ (φ−1
t ) is a martingale (see Section 3.2), also it

is well-known that process eγW (t)−γ
2t
2 and, hence, process m1(t) is

a martingale. Then the process m2(t), as the difference between
two martingales, is also martingale.



Some Properties of the Mean-Reverting Stochastic Volatil-
ity σ2(t) : First Two Moments, Variance and Covariation

From (4) we obtain the mean value of the first moment for
mean-reverting stochastic volatility σ2(t) :

Eσ2(t) = e−at[σ2(0)− L] + L. (11)

It means that Eσ2(t)→ L when t→ +∞. We need this moment
to value the variance swap.



Some Properties of the Mean-Reverting Stochastic Volatil-
ity σ2(t) : First Two Moments, Variance and Covariation

Using formulae (4) and (9) we can calculate the second moment
of σ2(t) :

E(σ2(t))2 = (e−at(σ2(0)− L) + L)2

+ γ2e−2at[(σ2(0)− L)2eγ
2t−1
γ2 + 2L(σ2(0)−L)(eat−eγ2t)

a−γ2

+ L2(e2at−eγ2t)
2a−γ2 ].



Some Properties of the Mean-Reverting Stochastic Volatil-
ity σ2(t) : First Two Moments, Variance and Covariation

Combining the first and the second moments we have the vari-
ance of σ2(t) :

V ar(σ2(t)) = Eσ2(t)2 − (Eσ2(t))2

= γ2e−2at[(σ2(0)− L)2eγ
2t−1
γ2 + 2L(σ2(0)−L)(eat−eγ2t)

a−γ2

+ L2(e2at−eγ2t)
2a−γ2 ].



Some Properties of the Mean-Reverting Stochastic Volatil-
ity σ2(t) : First Two Moments, Variance and Covariation

From the expression for W̃ (φ−1
t ) (see (10)) and for σ2(t) in (4)

we can find the explicit expression for σ2(t) through W (t) :

σ2(t) = e−at[σ2(0)− L+ W̃ (φ−1
t )] + L

= e−at[σ2(0)− L+m1(t) + Lm2(t)] + L

= σ2(0)e−ateγW (t)−γ
2t
2 + aLe−ateγW (t)−γ

2t
2

∫ t
0 e

ase−γW (s)+γ2s
2 ds,

(12)

where m1(t) and m2(t) are defined above.



Some Properties of the Mean-Reverting Stochastic Volatil-
ity σ2(t) : First Two Moments, Variance and Covariation

From (12) it follows that σ2(t) > 0 as long as σ2(0) > 0.

The covariation for σ2(t) may be obtained from (4), (7) and (9):

Eσ2(t)σ2(s) = e−a(t+s)(σ2(0)− L)2

+ e−a(t+s){γ2[(σ2(0)− L)2eγ
2(t∧s)−1
γ2

+ 2L(σ2(0)−L)(ea(t∧s)−eγ2(t∧s))
a−γ2

+ L2(e2a(t∧s)−eγ2(t∧s))
2a−γ2 ]}

+ e−at(σ2(0)− L)L+ e−as(σ2(0)− L)L+ L2.
(13)

We need this covariance to value the volatility swap.



Variance Swap for MRSVM

To calculate the variance swap for σ2(t) we need Eσ2(t). From
(11) it follows that

Eσ2(t) = e−at[σ2(0)− L] + L.

Then Eσ2
R := EV takes the following form:

Eσ2
R := EV :=

1

T

∫ T

0
Eσ2(t)dt =

(σ2(0)− L)

aT
(1−e−aT )+L. (14)

Recall, that V := 1
T

∫ T
0 σ2(t)dt.



Volatility Swap for MRSVM

To calculate the volatility swap for σ2(t) we need E
√
V = E

√
σR

and it means that we more than just Eσ2(t), because the realized
volatility σR :=

√
V =

√
σ2
R. Using Brockhaus-Long approxima-

tion we then get

E
√
V ≈

√
EV −

V ar(V )

8(EV )3/2
. (15)

We have EV calculated in (14). We need

V ar(V ) = EV 2 − (EV )2. (16)



Variance Swap for MRSVM

From (14) it follows that (EV )2 has the form:

(EV )2 =
(σ2(0)− L)2

a2T2
(1−e−aT )2+2

(σ2(0)− L)

aT
(1−e−aT )L+L2.

(17)



Variance Swap for MRSVM

Let us calculate EV 2 using (9) and (13):

EV 2 = 1
T2

∫ T
0

∫ T
0 Eσ2(t)σ2(s)dtds

= 1
T2

∫ T
0

∫ T
0 [e−a(t+s)(σ2(0)− L)2

+ e−a(t+s){γ2[(σ2(0)− L)2eγ
2(t∧s)−1
γ2

+ 2L(σ2(0)−L)(ea(t∧s)−eγ2(t∧s))
a−γ2 + L2(e2a(t∧s)−eγ2(t∧s))

2a−γ2 ]}
+ e−at(σ2(0)− L)L+ e−as(σ2(0)− L)L+ L2]dtds

(18)



Variance Swap for MRSVM

After calculating the interals in the second, forth and fifth lines
in (18) we have:

EV 2 = 1
T2

∫ T
0

∫ T
0 Eσ2(t)σ2(s)dtds

= (σ2(0)−L)2

a2T2 (1− e−aT )2

+ 1
T2

∫ T
0

∫ T
0 e−a(t+s){γ2[(σ2(0)− L)2eγ

2(t∧s)−1
γ2

+ 2L(σ2(0)−L)(ea(t∧s)−eγ2(t∧s))
a−γ2 + L2(e2a(t∧s)−eγ2(t∧s))

2a−γ2 ]}dtds

+ (σ2(0)−L)L
aT (1− e−aT ) + (σ2(0)−L)L

aT (1− e−aT ) + L2.

(19)



Variance Swap for MRSVM

Taking into account (16), (17) and (19) we arrive at the follow-
ing expression for V ar(V ) :

V ar(V ) = EV 2 − (EV )2

= 1
T2

∫ T
0

∫ T
0 e−a(t+s){γ2[(σ2(0)− L)2eγ

2(t∧s)−1
γ2

+ 2L(σ2(0)−L)(ea(t∧s)−eγ2(t∧s))
a−γ2 + L2(e2a(t∧s)−eγ2(t∧s))

2a−γ2 ]}dtds

= σ2(0)−L
T2

∫ T
0

∫ T
0 e−a(t+s)(eγ

2(t∧s) − 1)dtds

+ 2Lγ2(σ2(0)−L)
(a2−γ2)T2

∫ T
0

∫ T
0 e−a(t+s)(ea(t∧s) − eγ2(t∧s))dtds

+ γ2L2

(2a−γ2)T2

∫ T
0

∫ T
0 e−a(t+s)(e2a(t∧s) − eγ2(t∧s))dtds.

(20)



Variance Swap for MRSVM

After calculating the three integrals in (20) we obtain:

V ar(V ) = EV 2 − (EV )2

= 1
T2

∫ T
0

∫ T
0 e−a(t+s){γ2[(σ2(0)− L)2eγ

2(t∧s)−1
γ2

+ 2L(σ2(0)−L)(ea(t∧s)−eγ2(t∧s))
a−γ2 + L2(e2a(t∧s)−eγ2(t∧s))

2a−γ2 ]}dtds.
(21)



Variance Swap for MRSVM

From (15) and (21) we get the volatility swap:

E
√
V ≈

√
EV − V ar(V )

8(EV )3/2. (22)



Risk Neutral Stochastic Volatility Model (SVM)

Consider our model (1)

dσ2(t) = a(L− σ2(t))dt+ γσ2(t)dWt. (23)



Risk Neutral Stochastic Volatility Model (SVM)

Let λ be ’market price of risk’ and defind the following constants:

a∗ := a+ λσ, L∗ := aL/a∗.

Then, in the risk-neutral world, the drift paramater in (23) has
the following form:

a∗(L∗ − σ2(t)) = a(L− σ2(t))− λγσ2(t). (24)



Risk Neutral Stochastic Volatility Model (SVM)

Then the risk neutral stochastic volatility model has the following
form

dσ2(t) = (aL− (a+ λγ)σ2(t))dt+ γσ2(t)dW ∗t , (25)

or, equivalently,

dσ2(t) = a∗(L∗ − σ2(t))dt+ γσ2(t)dW ∗t , (26)

where

a∗ := a+ λγ, L∗ :=
aL

a+ λγ
. (27)

Now, we have the same model in (26) as in (1), and we are
going to apply our change of time method to this model (26) to
obtain the values of variance and volatility swaps.



Variance and Volatility Swaps for Risk-Neutral SVM

Using the same arguments as in the previous section (where
inplace of (4) we have to take (26)) we get the following expres-
sions for variance and volatility swaps taking into account (27).
For the variance swaps we have (see (14) and (27)):

E∗σ2
R := EV :=

1

T

∫ T

0
Eσ2(t)dt =

(σ2(0)− L∗)
a∗T

(1− e−a
∗T ) + L∗.

(28)



Risk Neutral Stochastic Volatility Model (SVM)

For the volatility swap we obtain (see (22) and (27))

E∗
√
V ≈

√
E∗V − V ar∗(V )

8(E∗V )3/2 (29)



Numerical Example: Toy Data

To apply our formula for calculating these values we need to cal-
ibrate the parameters a, L, σ2

0 and γ (T is monthly). These
parameters may be obtained from futures prices (future work),
e.g., using AECO Natural Gas Index, S&P GSCI or DJ-AIGCI.



Numerical Example: Toy Data

The parameters are the following:

Parameters
a γ L λ
4.6488 1.5116 2.7264 0.18



Numerical Example: Toy Data

For variance swap we use formula (14) and for volatility swap we
use formula (22).

From this table we can calculate the values for risk adjusted
parameters a∗ and L∗ :

a∗ = a+ λγ = 4.9337,

and

L∗ =
aL

a+ λγ
= 2.5690.



Numerical Example: Toy Data

For the value of σ2(0) we can take σ2(0) = 2.25.

For variance swap and for volatility swap with risk adjusted pa-
pameters we use formula (28) and (29), respectively.



Figures



Figure 1 depicts variance swap (price vs. maturity) using formula
(14).

Fig. 1: Variance Swap



Figure 2 depicts volatility swap (price vs. maturity) using
formula (22).

Fig. 2: Volatility Swap



Figure 3 depicts varinace swap with risk adjusted parameters
(price vs. maturity) using formula (28).

Fig. 3: Variance Swap (Risk

Adjusted Parameters)



Figure 4 depicts volatility swap with risk adjusted parameters
(price vs. maturity) using formula (29).

Fig. 4: Volatility Swap (Risk

Adjusted Parameters)



Figure 5 depicts comparison of adjusted (green line) and
non-adjusted price (red line) (naive strike vs. adjusted strike).

Fig. 5: Comparison: Adjusted

and Non-Adjusted Price



Figure 6 depicts convexity adjustment. It’s decreasing with
swap maturity (the volatility of volatility over a long period of

time is low).
Fig. 6: Convexity Adjustment
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Future Work

1. Parameters Estimation (S&P GSCI, OVX or DJ-AIGCI).

2. Options on futures contracts.

3. Possible jumps in the model for variance.
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