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Definition of Change of Time

Let (Ω,F ,Ft, P ) be a probability space with filtration Ft, t ∈
R+ := [0,+∞).

A time change is right-continuous increasing R+-valued process
Tt such that Tt is a stopping time for any t ∈ R+.

The inverse time change T̂t is defined as T̂t := inf{s ∈ R+ : Ts >

t}. Each T̂t is a stopping time as well.

By F̂t we define the time-changed filtration F̂t := FTt.



Change of Time Scale: Example

Let α(t) be a strictly positive measurable function on R and
define the following strictly increasing adapted process

Tt =
∫ t

0
α(xs)ds,

where xs is, e.g., a diffusion process. Then Tt is a change of
time. We note that

T̂t := inf{s : Ts > t}

is the inverse time change.



Change of Time Scale: Subordination

We could change time from t to a non-negative process T (t)

with non-decreasing sample paths.

If X(t) and T (t) are some processes, then X(T (t)) is subordinated
to X(t) and T (t) is a subordinator.

Good examples of T (t): Poisson, α-stable, the Lévy, inverse
Gaussian, gamma subordinators.

Nice property for Lévy processes: if X(t) is an arbitrary Lévy
process and T (t) is a subordinator on the same probability space
then X(T (t)) is a Lévy process.



A Motivation to Use CT: Transformation of SDEs

We frequently transform an SDE into another which may be
more amenable.

There are three general methods for transforming as SDE:

• change of time scale

• change of state space (e.g., by scale function)

• change of measure (e.g., by Girsanov’s theorem)

We shall be considering the change of time scale to transform a
SDE driven by Wiener and Lévy processes.



A Motivation to Use CT: Transformation of a Martingale
Problem

Let a and b be a diffusion and drift coefficients for a diffusion
process xt such that Px solves the martingale problem for (a, b)

started at x. Then for a smooth function f(x) on R we have

Ĉ
f
t := C

f
T̂t

:= f(xT̂t)− f(x0)−
∫ T̂t

0
Af(xs)ds

is an F̂t-local martingale, where A is a generator of xt.



A Motivation to Use CT: Martingale Problem

If we change variable in the integral, writing x̂t := xT̂t
, we find

that

Ĉ
f
t = f(x̂t)− f(x̂0)−

∫ t
0
α−1(x̂s)Af(x̂s)ds.

If α−1 is locally bounded, then Ĉ
f
t is an FT̂t-martingale and the

law of x̂t is a solution to the martingale problem for (α−1a, α−1b).



Literature Review on Time-Changing

Bochner (1949): introduced the notion of change of time (time-
changed Brownian motion)

Feller (1956): introduced subordinated process X(T (t)) with
Markov process X(t) and T (t) as a process with independent
increments (T (t) was called ’randomized operational time’)



Literature Review on Time-Changing: Embedding Problem

The change of time method is closely associated with the em-
bedding problem: to embed a process X(t) in Brownian motion
is to find a Wiener process process W (t) and an increasing fam-
ily of stopping times T (t) such that W (T (t)) has the same joint
distribution as X(t).

Skorokhod (1965): first treated the embedding problem, show-
ing that the sum of any sequence of independent r.v. with mean
zero and finite variation could be embedded in Brownian motion
using stopping times



Literature Review on Change of Time

Dambis (1965), Dubins & Schwartz (1965): independently showed
that every continuous martingale could be embedded in Brown-
ian motion

Huff (1969): showed that every process of pathwise bounded
variation could be embedded in Brownian motion

Knight (1971): discovered multivariate extension of Dambis (1965),
Dubins & Schwartz (1965) result



Literature Review on Change of Time

Meyer (1971), Papangelou (1972): independently discovered
Knight’s (1971) result for point processes

Monroe (1972): proved that every right continuous martingale
could be embedded in a Brownian motion

Clark (1973): introduced Bochner’s change of time into financial
economics

Monroe (1978): proved that a process can be embedded in
Brownian motion if and only if this process is a local semimartin-
gale



Literature Review on Change of Time

Johnson (1979): introduced time-changed stochastic volatility
model (SVM) in continuous time

Ikeda & Watanabe (1981): introduced and studied change of
time for the solution of SDEs

Rosiński & Woyczyński (1986): considered time changes for in-
tegrals over a stable Lévy processes



Literature Review on Time-Changing

Johnson & Shanno (1987): studied pricing of options using time-
changed SVM

Madan & Seneta (1990): introduced Variance Gamma (VG)
process (Brownian motion with drift time changed by a gamma
process)

Kallenberg (1992): considered time change representations for
stable integrals



Literature Review on Change of Time

Lévy processes can also be used as a time change for other Lévy
processes (subordinators)

Geman, Madan & Yor (2001): considered time changes for Lévy
processes (’business time’)

Kallsen & Shiryaev (2001): showed that Rosiński-Woyczyński-
Kallenberg statement can not be extended to any other Lévy
processes but symmetric α-stable



Literature Review on Change of Time

Barndorff-Nielsen, Nicolato & Shephard (2003): studied rela-
tiomship between subordination and SVM using change of tuime
(T (t)-’chronometer’)

Carr, Geman, Madan, Yor (2003): used subordinated processes
to construct SV for Lévy processes (T (t)-’business time’)

Carr, Geman, Madan & Yor (2003): used change of time to in-
troduce stochastic volatility into a Lévy model to achieve lever-
age effect and a long-term skew

Sw. (2004, 2007): applied change of time method for options
and swaps pricing for Gaussian models



Change of Time Method for Martingales

Let M(t) be a martingale, limt→+∞[M ](t) = +∞ and T̂ (t) :=

inf{s : [M ](s) > t}.

Then W (t) := M(T̂ (t)) is a Brownian motion. Also, M(t) :=

W ([M ](t)) is a martingale.

Here, change of time T (t) = [M ](t).



Change of Time Method for Itô Integral

Let M(t) :=
∫ t
0 σ(s)dW (s) be Itô integral, limt→+∞[M ](t) =∫ t

0 σ
2(s)ds = +∞ and T̂ (t) := inf{s : [M ](s) > t}.

Then W (t) := M(T̂ (t)) is a Brownian motion. Also, M(t) :=

W ([M ](t)) is a martingale.

Here, change of time T (t) = [M ](t) =
∫ t
0 σ

2(s)ds.



Change of Time Method for SDE driven by Brownian mo-
tion

We consider the following SDE driven by a Brownian motion:

dX(t) = a(t,X(t))dW (t),

where W (t) is a Brownian motion and a(t,X) is a continuous
and measurable by t and X function on [0,+∞)×R.



Change of Time Method for SDE driven by Brownian mo-
tion (cntd)

Theorem. (Ikeda and Watanabe (1981), Chapter IV, Theorem
4.3)

Let Ŵ (t) be an one-dimensional Ft-Wiener process with Ŵ (0) =

0, given on a probability space (Ω,F , (Ft)t≥0, P ) and let X(0) be
an F0-adapted random variable.

Define a continuous process V = V (t) by the equality

V (t) = X(0) + Ŵ (t).



Change of Time Method for SDE driven by Brownian mo-
tion (cntd)

Let Tt be the change of time process:

Tt =
∫ t

0
a2(Ts, X(0) + Ŵ (s))ds.

If

X(t) := V (T̂t) = X(0) + Ŵ (Tt)

and F̂t := FT̂t, then there exists F̂t-adapted Wiener process
W = W (t) such that (X(t),W (t)) is a solution of dX(t) =

a(t,X(t))dW (t) on probability space (Ω,F , F̂t, P ), where T̂t is the
inverse to Tt time change.



Solutions to the One-Factor Gaussian Models Using CT

We use change of time method (see Ikeda and Watanabe (1981))
to get the solutions to the following below equations.

W (t) below is an standard Brownian motion, and Ŵ is a (T̂t)t∈R+
-

adapted standard Brownian motion on (Ω,F , (F̂t)t∈R+
, P ).



Solutions to Some SDEs (Useful for Applications)

Geometric Brownian Motion. dS(t) = µS(t)dt+ σS(t)dW (t).

Solution: S(t) = eµt[S(0) + Ŵ (Tt)],
where Tt = σ2 ∫ t

0[S(0) + Ŵ (Ts)]2ds.

Continuous-Time GARCH Process.
dS(t) = µ(b− S(t))dt+ σS(t)dW (t).

Solution: S(t) = e−µt(S(0)− b+ Ŵ (Tt)) + b,

where Tt = σ2 ∫ t
0[S(0)− b+ Ŵ (Ts) + eµsb)2ds.

Cox-Ingersol-Ross Process. dσ2
t = k(θ2 − σ2

t )dt+ γσtdW (t).

Solution: σ2
t = e−kt(σ2

0 − θ
2 + Ŵ (Tt)) + θ2,

where T (t) = γ2 ∫ t
0[ekT (s)(σ2

0 − θ
2 + Ŵ (Ts)) + θ2e2kT (s)]ds.



Solutions to the Multi-Factor Gaussian Models (cntd)

Solutions to the multi-factor models driven by Brownian motions
can be obtained using various combinations of solutions of the
processes described by SDEs. We give one example of two-factor
Continuous-Time GARCH model driven by Brownian motions:

{
dS(t) = r(t)S(t))dt+ σ1S(t)dW1(t)
dr(t) = a(m− r(t))dt+ σ2r(t)dW

2(t).



Solutions to the Multi-Factor Gaussian Models (cntd)

Solution, using CTM for the first and the second equations:

S(t) = e
∫ t

0 rsds[S0 + Ŵ1(T1
t )]

= e
∫ t

0 e
−as[r0−m+Ŵ2(T2

s )]ds[S0 + Ŵ1(T1
t )],

where T i and Ŵ i are inverse CT and Brownian motions defined
for GBM and continuous-time GARCH model, respectively, i =

1,2.



Can We Replace W (t) by Lévy Process L(t) and Use CT?

Any solution using CT method for

dX(t) = a(t,X(t−))dL(t),

where L(t) is a Lévy process?

Kallsen & Shiryaev (2001) showed that this is only possible for
symmetric α-stable Lévy process.



Lévy Processes

By Lévy process we define a stochastically continuous process
with stationary and independent increments, Sato (1999), Ap-
plebaum (2003), Schoutens (2003).

Examples of Lévy Processes in Finance:

• Brownian motion with drift (only continuous Lévy process)

• Merton model=Brownian motion+drift+Gaussian jumps

• Kou model=Brownian motion+drift+exponential jumps

• VG, IG, NIG, GH processes

• α-stable Lévy processes



α-Stable Lévy Processes

Let α ∈ (0,2]. An α-stable Lévy process L such that L1 (or equiv-
alently any Lt) has an α-stable distribution (i.e., L1 ≡ Sα(σ, β, δ)).

For values of α ∈ (1,2] location parameter δ corresponds to
the mean of the α-stable distribution, while for 0 < α ≤ 1, δ
corresponds to its median.

The parameter β ∈ [−1,1] determines the skewness of the distri-
bution.

The dispersion parameter σ ≥ 0 corresponds to the spread of the
distribution around its location parameter δ.

The characteristic exponent α determines the shape of the dis-
tribution.



α-Stable Lévy Processes

We call L a symmetric α-stable Lévy process if the distribution
of L1 is symmetric α-stable (i.e., L1 ≡ Sα(σ,0,0) for some α ∈
(0,2], σ ∈ R+.) (See Sato (2005)).

Characteristic function:

φ(u) = e−σ
α|u|α.



α-Stable Lévy Processes

The probability density of an α-stable law is not known in closed
form except in the following three cases:

the Lévy (α = 1/2), Cauchy (α = 1) and the Gaussian (α = 2)
distributions.

However, power series expansions can be derived for any density
function.

Its tails (algebraic tails) decay at a lower rate than the Gaussian
density tails (exponential tails).



α-Stable Lévy Processes

• the only self-similar Lévy processes: L(at)
Law
= a1/αL(t), a ≥ 0

• either Brownian motion or pure jump

• characteristic exponent, Lévy-Khintchine triplet known in closed
form

• 4 parameters

• infinite variance (except for Brownian motion)



α-Stable Lévy Processes

• α-stable Lévy Processes are semimartingales (
∫ t
0 fsdLs can be

defined)

• α-stable Lévy Processes are pure discontinuous Markov pro-
cesses with generator

Af(x) =
∫
R−{0}

[f(x+ y)− f(x)− yf ′(y)1|y|<1(y)]
Kα

|y|1+α
dy



α-Stable Lévy Processes

α-stable distributions on R never admit a second moment, and
they only admit a first moment if α > 1.

E|L(t)|p is finite or infinite according as 0 < p < α or p > α,

respectively.

In particular, for an α-stable process EL(t) = δt (1 < α ≤ 2)
(Sato (2005)).



SDE Driven by α-stable Lévy Processes

dXt = b(Xt−)dt+ σ(Xt−)dL(t)

Janicki, Michna & Weron (1996): there exists unique solution
for continuous b, σ and α-stable Lévy process.

Zanzotto (1997): solutions of one-dimensional SDEs driven by
stable Lévy motion

Cartea & Howison (2006): option pricing with Lévy-stable pro-
cesses generated by Lévy-stable integrated variance



SDE Driven by α-stable Lévy Processes

One-Factor Lévy Models

L(t) below is a symmetric α-stable Lévy process. We define
below various processes via SDE driven by α-stable Lévy process.

1. Geometric α-stable Lévy Motion.
dS(t) = µS(t−)dt+ σS(t−)dL(t).

2. Continuous-Time GARCH Process Driven by α-stable Lévy
Process.
dS(t) = µ(b− S(t−))dt+ σS(t−)dL(t).

3. Cox-Ingersoll-Ross Process Driven by α-stable Lévy Motion.
dS(t) = k(θ − S(t−))dt+ γ

√
S(t−)dL(t).



Multi-Factor Lévy Models

Multi-factor models driven by α-stable Lévy motions can be ob-
tained using various combinations of above-mentioned processes.
We give one example of two-factor continuous-time GARCH
model driven by α-stable Lévy processes:{

dS(t) = r(t−)S(t−))dt+ σ1S(t−)dL1(t)
dr(t) = a(m− r(t−))dt+ σ2r(t−)dL2(t).



Change of Time Method for SDE Driven by Lévy Process

Can we solve these SDEs driven by Lévy processes using change
of time methos?

The answer is ’Yes’ for SDEs driven by α-stable Lévy processes.



Change of Time Method for SDE Driven by Lévy Process

We denote by Lαa.s. the family of all real measurable Ft-adapted
processes a on Ω×[0,+∞) such that for every T > 0,

∫ T
0 |a(t, ω)|αdt <

+∞ a.s. We consider the following SDE driven by an α-stable
Lévy process:

dX(t) = a(t,X(t−))dL(t).



Change of Time Method for SDE Driven by Lévy Process

Theorem. (Rosinski and Woyczynski (1986), Theorem 3.1.,
p.277). Let a ∈ Lαa.s. be such that T (t) :=

∫ t
0 |a|αdu → +∞ a.s.

as u→ +∞. If T̂ (t) := inf{u : T (u) > t} and F̂t = FT̂ (t), then the

time-changed ctochastic integral L̂(t) =
∫ T̂ (t)
0 adL(t) is an F̂t−α-

stable Lévy process, where L(t) is Ft-adapted and Ft-α-stable
Lévy process.



Change of Time Method for SDE Driven by Lévy Process

Consequently, a.s. for each t > 0
∫ t
0 adL = L̂(T (t)), i.e., the

stochastic integral with respect to a α-stable Lévy process is
nothing but another α-stable Lévy process with randomly changed
time scale.



Solutions to the One-Factor Lévy Models Using CTM

L(t) below is a symmetric α-stable Lévy process, and L̂ is a
(T̂t)t∈R+

-adapted symmetric α-stable Levy process on (Ω,F , F̂t, P )).

Geometric α-stable Lévy Motion. dS(t) = µS(t−)dt+σS(t−)dL(t).
Solution S(t) = eµt[S(0) + L̂(Tt)], where Tt = σα

∫ t
0[S(0) +

L̂(Ts)]αds.

Continuous-Time GARCH α-stable Lévy Process. dS(t) = µ(b−
S(t−))dt+σS(t−)dL(t). Solution S(t) = e−µt(S(0)−b+L̂(Tt))+b,

where Tt=σα
∫ t
0[S(0)− b+ L̂(Ts) + eµsb]αds.

Cox-Ingersoll-Ross α-stable Lévy Process. dS(t) = k(θ2−S(t−))dt+

γ
√
S(t−)dL(t). Solution S2(t) = e−kt[S2

0 − θ
2 + L̂(Tt)] + θ2, where

Tt = γα
∫ t
0[ekTs(S2

0 − θ
2 + L̂(Ts)) + θ2e2kTs]α/2ds.



Change of Time Method for SDE Driven by Lévy Process

Solution to the Multi-Factor Lévy models Using CTM

Solution to the multi-factor models driven by α-stable Lévy mo-
tions can be obtained using various combinations of solutions of
the above-mentioned processes and CTM. We give one example
of two-factor continuous-time GARCH model driven by α-stable
Lévy motions:

{
dS(t) = r(t−)S(t−))dt+ σ1S(t−)dL1(t)
dr(t) = a(m− r(t−))dt+ σ2r(t−)dL2(t).



Change of Time Method for SDE Driven by Lévy Process

Solution to the Multi-Factor Lévy Models Using CTM

Solution, using CTM for the first and the second equations:

S(t) = e
∫ t

0 rsds[S0 + L̂1(T1
t )]

= e
∫ t

0 e
−as[r0−m+L̂2(T2

s )]ds[S0 + L̂1(T1
t )],

where T i are defined above (i=1,2), respectevely.



Applications of CTM in Financial and Energy Markets

Change of Time Method will be applied to:

• Financial markets

• Energy markets



Applications of CTM in Financial Markets

We show how to apply CTM to get:

• Black-Scholes formula

• Variance and volatility swaps for Heston Model

• Variance swap for Lévy-based Heston model

• Lévy-based SABR model



Applications of CTM in Financial Markets: Black-Scholes
Formula

dS(t) = rS(t)dt+ σS(t)dW ∗(t)

where

W ∗(t) := W (t) +
µ− r
σ

.

Solution:

S(t) = ert[S(0) + Ŵ ∗(Tt)],

where

Ŵ ∗(Tt) = S(0)(eσW
∗(t)−σ

2t
2 − 1)



Applications of CTM in Financial Markets: Black-Scholes
Formula

Straightforward calculation gives the Black-Scholes formula:

C(T ) = e−rTEP
∗
[(S(T )−K)+]

= e−rTEP
∗
[erT (S(0) + Ŵ ∗(Tt))−K]+

= e−rTEP
∗
[erTS(0)eσŴ

∗(T )−(σ2T )/2 −K]+

= S(0)Φ(d+)−Ke−rTΦ(d−).



Applications of CTM in Financial Markets: VarSwaps and
VolSwaps

Why trade volatility (variance)?

• Volatility swaps allow investors to profit from the risks of an
increase or decrease in future volatility of an index of securities
or to hedge against these risks

• If you think current volatility is low, for the right price you
might want to take a position that profits if volatility increases



Applications of CTM in Financial Markets: Var and Vol
Swaps

• Volatility swaps are forward contracts on future realized stock
volatility

• Variance swaps are similar contract on variance, the square of
the future volatility

Payoff for VarSwap at expiration: N(σ2
R(S)−Kvar)

Payoff for VolSwap at expiration: N(σR(S)−Kvol)

Here, σR(S) is the realized volatility over the life of contract:
σR(S) :=

√
1
T

∫ T
0 σ2

s ds.



Applications of CTM in Financial Markets: Pricing of Var-
Swaps and VolSwaps

The value of a forward contract P on future realized variance
with strike price Kvar is the expected present value of the future
payoff in the risk-neutral world:

Pvar = e−rT (Eσ2
R(S)−Kvar),

where r is the risk-free discount rate corresponding to the expi-
ration date T, and E denotes the expectation.

Thus, for calculating variance swaps we need to know only E{σ2
R(S)},

namely, mean value of the underlying variance.



Applications of CTM in Financial Markets: Pricing of Var
and Vol Swaps

To calculate volatility swaps we need more. From Brockhaus-
Long (2000) approximation (which is used the second order Tay-
lor expansion for function

√
x) we have:

E{
√
σ2
R(S)} ≈

√
E{V } −

V ar{V }
8E{V }3/2

,

where V := σ2
R(S) and V ar{V }

8E{V }3/2 is the convexity adjustment.

Thus, to calculate the value of volatility swaps

Pvol = {e−rT (E{σR(S)} −Kvol)}

we need both E{V } and V ar{V }.



Applications of CTM in Financial Markets: VarSwap and
VolSwap for Heston Model

Assume that underlying asset St in the risk-neutral world and
variance follow the following model, Heston (1993) model:{

dSt
St

= rtdt+ σtdw
1
t

dσ2
t = k(θ2 − σ2

t )dt+ γσtdw
2
t ,

where rt is deterministic interest rate, σ0 and θ are short and
long volatility, k > 0 is a reversion speed, γ > 0 is a volatility
(of volatility) parameter, w1

t and w2
t are independent standard

Wiener processes.



Applications of CTM in Financial Markets: Var and Vol
Swaps for Heston Model

The solution of the following equation

dσ2
t = k(θ2 − σ2

t )dt+ γσtdw
2
t

has the following look

σ2
t = e−kt(σ2

0 − θ
2 + ŵ2(Tt)) + θ2,

where Tt is the change of time.



Applications of CTM in Financial Markets: Pricing of Var
and Vol Swaps for Heston Model

The value (or price) Pvar of variance swap is

Pvar = e−rT [
1− e−kT

kT
(σ2

0 − θ
2) + θ2 −Kvar]

The value (or price) Pvol of volatility swap is

Pvol = e−rT{(1−e−kT
kT (σ2

0 − θ
2) + θ2)1/2

− (γ
2e−2kT

2k3T2 [(2e2kT − 4ekTkT − 2)(σ2
0 − θ

2)

+ (2e2kTkT − 3e2kT + 4ekT − 1)θ2])/[8(1−e−kT
kT (σ2

0 − θ
2) + θ2)3/2]]

− Kvol}.

(See Brokhaus & Long (2000), Sw.(2004))



Applications of CTM in Financial Markets: Pricing of Var
and Vol Swaps for Heston Model

Numerical Example: S&P 60 Canada Index

The statistics on log returns S&P60 Canada Index for 5 year
(January 1997-February 2002) is presented in the following Ta-
ble:



Statistics on Log-Returns S&P60 Canada Index
Series: Log-returns

S&P60

Canada Index
Sample: 1 1300
Observations: 1300
Mean 0.000235
Median 0.000593
Maximum 0.051983
Minimum -0.101108
Std. Dev. 0.013567
Skewness -0.665741
Kurtosis 7.787327



Convexity Adjustment: Non-adjusted vs. Adjusted Vol



S&P60 Canada Index Vol Swap



Applications of CTM in Financial Markets: Variance Swaps
for Lévy-based Heston Model

Assume that underlying asset St in the risk-neutral world and
variance follow the following model:{

dSt
St

= rtdt+ σtdwt

dσ2
t = k(θ2 − σ2

t )dt+ γσtdLt,

where rt is deterministic interest rate, σ0 and θ are short and
long volatility, k > 0 is a reversion speed, γ > 0 is a volatility (of
volatility) parameter, wt and Lt are independent standard Wiener
and α-stable Lévy processes (α ∈ (1,2]).



Applications of CTM in Financial Markets: Variance Swaps
for Lévy-based Heston Model

Solution:

σ2(t) = e−kt[σ2
0 − θ

2 + L̂(Tt)] + θ2,

where Tt = γα
∫ t
0[ekTs(σ2

0 − θ
2 + L̂(Ts)) + θ2e2kTs]α/2ds.



Applications of CTM in Financial Markets: Variance Swaps
for Lévy-based Heston Model

Realized Variance:

σ2
R(S) :=

1

T

∫ T
0
σ2(s)ds =

1

T

∫ T
0
{e−ks[σ2

0 − θ
2 + L̂(Ts)] + θ2}ds,

Value of Variance Swap:

Pvar = E{e−rT (σ2
R(S)−Kvar)}

= E{e−rT (1
T

∫ T
0 {e−ks[σ2

0 − θ
2 + L̂(Ts)] + θ2}ds−Kvar)



Applications of CTM in Financial Markets: Variance Swaps
for Lévy-based Heston Model

Thus, for calculating variance swaps we need to know only E{σ2
R(S)},

namely, mean value of the underlying variance, or E[L̂(Ts)].

Only moments of order less than α exist for the non-Gaussian
family of α-stable distribution. We suppose that 1 < α ≤ 2 to
find E[L̂(Ts)].



Applications of CTM in Financial Markets: Variance Swaps
for Lévy-based Heston Model

The value of variance swap for Lévy-based Heston Model:

Pvar = e−rT [
1− e−kT

kT
(σ2

0 − θ
2) + θ2 +

δT

2
−Kvar],

where δ is a location parameter.

When δ = 0, then the value of the var swap for Lévy-based Hes-
ton model coincides with the value of the var swap for classical
Heston model.



Applications in Financial Markets: Gaussian-based SABR
or LMM Models

SABR model (see Hagan, Kumar, Lesniewski and Woodward
(2002)) and the Libor Market Model (LMM) (Brace, Gatarek
and Musiela (BGM, 1996)) have become industry standards for
pricing plain-vanilla and complex interest rate products, respec-
tively.

Gaussian-based SABR model, a stochastic volatility model in
which the forward value satisfies:

{
dFt = σtF

β
t dW

1
t

dσt = νσtdW
2
t ,



Applications in Financial Markets: Lévy-based SABR

Lévy-based SABR model, a stochastic volatility model in which
the forward value satisfies:

{
dFt = σtF

β
t dWt

dσt = νσtdLt,



Applications in Financial Markets: Lévy-based SABR

Lévy-Based SABR: solution using change of time

Ft = F0 + Ŵ (T1
t ),

T1
t =

∫ t
0
σ2
T1
s

(F0 + Ŵ (s))2βds,

σt = σ0 + L̂(T2
t ),

T2
t = να

∫ t
0

(σ0 + L̂(s))αds.



Applications of CTM in Energy Markets

• Option Pricing Formula for a Mean-reverting Asset

• Pricing Futures and Forwards

• Variance and Volatility Swaps



Applications of CTM in Energy Markets: Option Pricing
Formula for a Mean-Reverting Asset

Some commodity prices, like oil and gas, exhibit the mean re-
version, unlike stock price. It means that they tend over time to
return to some longterm mean. Here, we consider a risky asset
St following the mean-reverting stochastic process given by the
following stochastic differential equation (a.k.a. continuous-time
GARCH process).



Applications of CTM in Energy Markets: Option Pricing
Formula for a Mean-Reverting Asset

Continuous-time GARCH process for a mean-reverting asset:

dSt = a(L− St)dt+ σStdWt.

where W is a standard Wiener process, σ > 0 is the volatility,
the constant L is called the ’long-term mean’ of the process, to
which it reverts over time, and a > 0 measures the ’strength’ of
mean reversion.



Applications of CTM in Energy Markets: Option Pricing
Formula for a Mean-Reverting Asset

If λ is a market price of risk, then the latter equation in a risk-
neutral world has a look:

dSt = a∗(L∗ − St)dt+ σStdW
∗
t ,

where

a∗ := a+ λσ, L∗ :=
aL

a+ λσ
,

and W ∗t := Wt + λ
∫ t
0 S(u)du.



Applications of CTM in Energy Markets: Option Pricing
Formula for a Mean-Reverting Asset

Solution using CTM:

St = e−a
∗t[S0 − L∗+ Ŵ ∗(Tt)] + L∗.

Here, Tt is the CT for continuous-time GARCH process S(t),

introduced before.



Applications of CTM in Energy Markets: Option Pricing
Formula for a Mean-Reverting Asset

C∗T = e−(r+a∗)TS(0)Φ(y+)− e−rTKΦ(y−)

+ L∗e−(r+a∗)T [(ea
∗T − 1)−

∫ y0
0 zF ∗T (dz)],

where y0 is the solution of the following equation

y0 =
ln( K

S(0)) + (σ
2

2 + a∗)T

σ
√
T

−
ln(1 + a∗L∗

S(0)

∫ T
0 ea

∗se−σy0
√
s+σ2s

2 ds)

σ
√
T

,



Applications of CTM in Energy Markets: Option Pricing
Formula for a Mean-Reverting Asset

y+ := σ
√
T − y0 and y− := −y0,

and F ∗T (dz) is a probability distribution, that can be found using
Yor’s result (Yor (1992)) for exponential functions of Brownian
motion . See Sw. (2008), J. Numer. Appl. Math., v. 1(96),
pp. 216-233, for more details.



Applications of CTM in Energy Markets: Option Pricing
Formula for a Mean -Reverting Asset

As we can see,

C∗T = BST + LT = (Black − Scholes Part)
+ (Additional Mean− revertion Part).

If L∗ = 0 (or L = 0) and a∗ = −r, then C∗T coincides with Black-
Scholes result!



Applications of CTM in Energy Markets: Energy Forwards
and Futures

Random variables following α-stable distribution with small char-
acteristic exponent are highly impulsive, and it is this heavy-tail
characteristic that makes this density appropriate for modeling
noise which is impulsive in nature, for example, energy prices
such as electricity.



Applications of CTM in Energy Markets: Energy Forwards
and Futures (Lévy-Based Schwartz-Smith Model)


ln(St) = κt + ξt
dκt = (−kκt − λκ)dt+ σκdLκ
dξt = (µξ − λξ)dt+ σξdWξ,

where St current spot price, κt is the short-term deviation in
prices, ξt is the equilibrium price level.



Applications of CTM in Energy Markets: Energy Forwards
and Futures (Lévy-Based Schwartz-Smith Model)

Let Ft,T denotes the market price for a futures contract with
maturity T, then:

ln(Ft,T ) = e−k(T−t)κt + ξt +A(T − t),

where A(T−t) is a deterministic function with explicit expression.‘
We note that κt, using change of time for α-stable processes can
be presented in the following form:

κt = e−kt[κ0 +
λκ

k
+ L̂κ(Tt)],

Tt = σακ

∫ t
0

(e−ks[κ0 +
λκ

k
+ L̂κ(Ts)]−

λκ

k
)αds



Applications of CTM in Energy Markets: Energy Forwards
and Futures (Lévy-Based Schwartz-Smith Model)

In this way, the market price for a futures contract with maturity
T has the following look:

ln(Ft,T ) = e−kT [κ0 + λκ
k + L̂κ(Tt)]

+ ξ0 + (µξ − λξ)t+ σξWξ +A(T − t),

where Lévy process L̂κ and Wiener process Wξ may be corre-
lated.



Applications of CTM in Energy Markets: Energy Forwards
and Futures (Lévy-Based Schwartz Model)


d ln(St) = (rt − δt)Stdt+ Stσ1dW1

dδt = k(a− δt)dt+ σ2dL
drt = a(m− rt)dt+ σ3dW2,

where W1,W2 are Wiener processes and L is an α-stable Lévy
process. δt and rt are instantaneous convenience yield and inter-
est rate, respectively.



Applications of CTM in Energy Markets: Energy Forwards
and Futures (Lévy-Based Schwartz Model)

We note that:

δt = ekt(δ0 − a+ L̂(T̂t)),
T̂t = σα2

∫ t
0(eks[δ0 − a+ L̂(T̂s)] + a)αds

and
rt = eat(r0 −m+ Ŵ2(Tt)),
Tt = σ2

3
∫ t
0(eas[r0 −m+ Ŵ2(Ts)] +m)2ds.



Applications of CTM in Energy Markets: Energy Forwards
and Futures (Lévy-Based Schwartz Model)

Solution for ln[St] :

ln[St] =

= e
∫ t

0[eas(r0−m+Ŵ2(T2
s ))−eks(δ0−a+L̂(Ts))]ds[lnS0 + Ŵ1(T1

t )].



Applications of CTM in Energy Markets: Energy Forwards
and Futures (Lévy-Based Schwartz Model)

In this way, the futures contracts has the following form:

ln(Ft,T ) = 1−e−k(T−t)
k δt + 1−e−a(T−t)

a rt + ln(St) + C(T − t)
= 1−e−k(T−t)

k [ekt(δ0 − a+ L̂(Tt))]

+ 1−e−a(T−t)
a eat(r0 −m+ Ŵ2(T2

t ))
+ exp{

∫ t
0(eas(r0 −m+ Ŵ2(T2

s ))
− eks(δ0 − a+ L̂(Ts)))ds}[ln(S0) + Ŵ1(T1

t )]
+ C(T − t),

where C(T − t) is a deterministic explicit function.



Applications of CTM in Energy Markets: Var and Vol
Swaps

Variance swaps are quite common in commodity, e.g., in energy
market, and they are commonly traded.

Energy is the most important commodity sector, and crude oil
and natural gas constitute the largest components of the two
most widely tracked commodity indices: the Standard & Poors
Goldman Sachs Commodity Index (S&P GSCI) and the Dow
Jones-AIG Commodity Index (DJ-AIGCI).



Applications of CTM in Energy Markets: Var and Vol
Swaps

The CBOE Crude Oil ETF Volatility Index (’Oil VIX’, Ticker
- OVX) measures the market’s expectation of 30-day volatility
of crude oil prices by applying the VIX methodology to United
States Oil Fund, LP (Ticker - USO) options spanning a wide
range of strike prices (see Figures below. Courtesy-CBOE:

http://www.cboe.com/micro/oilvix/introduction.aspx).



OVX Bi-hourly



CBOE Crude Oil Volatility Index (OVX)



Applications of CTM in Energy Markets: Var and Vol
Swaps

The following next slides are devoted to the pricing of variance
and volatility swaps in energy market. We found explicit vari-
ance swap formula and closed form volatility swap formula (using
change of time) for energy asset with stochastic volatility that
follows continuous-time mean-reverting GARCH model. Numer-
ical example is presented for AECO Natural Gas Index (1 May
1998-30 April 1999).



Applications of CTM in Energy Markets: Var and Vol
Swaps

We consider a risky asset in energy market with stochastic volatil-
ity following a mean-reverting stochastic process the following
stochastic differential equation:

dσ2(t) = a(L− σ2(t))dt+ γσ2(t)dWt,

where a > 0 is a speed (or ’strength’) of mean reversion, L > 0

is the mean reverting level (or equilibrium level, or long-term
mean), γ > 0 is the volatility of volatility σ(t), Wt is a standard
Wiener process.



Applications of CTM in Energy Markets: Var and Vol
Swaps

In the risk-neutral world:

dσ2(t) = a∗(L∗ − σ2(t))dt+ γσ2(t)dW ∗t ,

where

a∗ := a+ λγ, L∗ :=
aL

a+ λγ
,

and W ∗t := Wt + λt.



Applications of CTM in Energy Markets: Var and Vol
Swaps

Solution:

σ2(t) = e−a
∗t[σ2(0)− L∗+Ŵ (Tt)] + L∗.



Applications of CTM in Energy Markets: Var and Vol
Swaps

To calculate the variance swap for σ2(t) we need Eσ2(t). From
previous slide it follows that

E∗σ2(t) = e−a
∗t[σ2(0)− L∗] + L∗.

Then E∗σ2
R := E∗V takes the following form:

E∗σ2
R := E∗V :=

1

T

∫ T
0
Eσ2(t)dt =

(σ2(0)− L∗)
a∗T

(1− e−a
∗T ) + L∗.

Recall, that V := 1
T

∫ T
0 σ2(t)dt.



Applications of CTM in Energy Markets: Var and Vol
Swaps

To calculate the volatility swap for σ2(t) we need E
√
V = E

√
σR

and it means that we more than just Eσ2(t), because the realized
volatility σR :=

√
V =

√
σ2
R. Using Brockhaus-Long approxima-

tion we then get

E∗
√
V ≈

√
E∗V −

V ar∗(V )

8(E∗V )3/2
.

The V ar∗(V ) is calculating as follows:

V ar∗(V ) = E∗V 2 − (E∗V )2

= 1
T2

∫ T
0
∫ T
0 e−a

∗(t+s){γ2[(σ2(0)− L∗)2eγ
2(t∧s)−1
γ2

+ 2L∗(σ2(0)−L∗)(ea
∗(t∧s)−eγ2(t∧s))

a∗−γ2 + (L∗)2(e2a∗(t∧s)−eγ2(t∧s))
2a∗−γ2 ]}dtds.



Applications of CTM in Energy Markets: Var and Vol
Swaps (Numerical Example)

We shall calculate the value of variance and volatility swaps prices
of a daily natural gas contract. To apply our formula for calculat-
ing these values we need to calibrate the parameters a, L, σ2

0
and γ (T is monthly). These parameters may be obtained from
futures prices for the AECO Natural Gas Index for the period 1
May 1998 to 30 April 1999 (see Bos, Ware and Pavlov (2002)).



Applications of CTM in Energy Markets: Var and Vol
Swaps (Numerical Example)

The parameters are the following:

Parameters
a γ L λ
4.6488 1.5116 2.7264 0.18



Applications of CTM in Energy Markets: Var and Vol
Swaps (Numerical Example)

From this table we can calculate the values for risk adjusted
parameters a∗ and L∗ :

a∗ = a+ λγ = 4.9337,

and

L∗ =
aL

a+ λγ
= 2.5690.

For the value of σ2(0) we can take σ2(0) = 2.25.



Fig. 1: Variance Swap Fig. 2: Volatility Swap



Fig. 3: Variance Swap (Risk

Adjusted Parameters)

Fig. 4: Volatility Swap (Risk

Adjusted Parameters)



Fig. 5: Comparison: Adjusted

and Non-Adjusted Price

Fig. 6: Convexity Adjustment



Delayed Heston Model

• Motivation: to include past history (a.k.a. delay) of the vari-
ance (over some delayed time interval [t− τ, t])

• Advantage: Improvement of the Volatility Surface Fitting (44%

reduction of the calibration error) compare with Classical Heston
model

• Goal: to price and hedge volatility swaps



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

The Heston model is one of the most popular stochastic volatility
models in the industry, as semi-closed formulas for vanilla option
prices are available, few (five) parameters need to be calibrated,
and it accounts for the mean-reverting feature of the volatility.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

We’d like to take into account not only its current state (as it is
the case in the Heston model) but also its past history over some
interval [t− τ , t], where τ is a positive constant and is called the
delay. Namely, at each time t, the immediate future volatility at
time t+ ε will not only depend on its value at time t but also on
all its history over [t− τ , t].



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Namely, at each time t, the immediate future volatility at time
t + ε will not only depend on its value at time t but also on all
its history over [t − τ , t]. Starting from the well-known discrete-
time GARCH(1,1) model, a continuous-time GARCH variance
diffusion incorporating delay (let’s refer to it as ’delayed vol’)
was introduced in a paper Sw. (2005). Unfortunately, the lat-
ter model doesn’t lead to (semi-)closed formulas for the vanilla
options, making it difficult to use for practitioners willing to cali-
brate on vanilla market prices (which can be a serious drawback).



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Nevertheless, one can notice that the Heston model and ’delayed
vol’ are very similar in the sense that the expected values of the
variances are the same - when we make the delay tends to 0
in ’delayed vol’. As mentioned before, the Heston framework
is very convenient for practitioners, and therefore it is naturally
tempting to adjust the Heston dynamics in order to incorporate
- in some way - the delay introduced in ’delayed vol’.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

We considered in a first approach adjusting the Heston drift by
a deterministic function of time so that the expected value of
the variance under our new delayed Heston model is equal to
the one under ’delayed vol’. Our approach can therefore be seen
as a variance 1st moment correction of the Heston model, in
order to account for the delay. It is important to note that our
model is a generalization of the classical Heston model (the latter
corresponding to the zero delay case τ = 0 of our model).



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

We performed numerical tests to validate our approach. With
recent market data (Sept. 30th 2011, underlying EURUSD),
we performed the model calibration on the whole market vanilla
option price surface (14 maturities from 1M to 10Y, 5 strikes
ATM, 25 Delta Call/Put, 10 Delta Call/Put). The results show
a significant (44%) reduction of the average absolute calibration
error compared to the Heston model (i.e. average of the absolute
differences between market and model prices).



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Further, we considered variance and volatility swaps hedging and
pricing in our delayed Heston framework. These contracts are
widely used in the financial industry and therefore it is relevant to
know their price processes (how much they worth at each time
t) and how we can hedge a position on them, i.e. theoretically
cancel the risk inherent to holding one unit of them.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

Using the fact that every continuous local martingale can be
represented as a time-changed Brownian motion, as well as the
Brockhaus & Long approximation (that allows to approximate
the expected value of the square-root of an almost surely non
negative random variable using a 2nd order Taylor expansion
approach), we were able to derive closed formulas for variance
and volatility swaps price processes.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Prose)

In addition, as variance swaps are relatively liquid instruments
in the market (i.e. they can be easily bought and sold), we
considered the question of hedging a position on a volatility swap
using variance swaps in our framework.

We were able to derive a closed formula for the dynamic hedge
ratio, i.e. the number of units of variance swaps to hold at each
time in order to hedge a position on a volatility swap.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

• Motivation: past history of the varinace in its diffusion (over
some delayed time interval [t− τ , t])

• Non-Markov continuous-time GARCH model (Sw. (2005))

dVt

dt
= γ(θ2 − Vt) + α

[
1

τ
(
∫ t
t−τ

√
VsdZ

Q
s − (µ− r)τ)2 − Vt

]
•  dVt = [γ(θ2 − Vt) + ετ(t)]dt+ δ

√
VtdW

Q
t

ετ(t) := α
[
τ(µ− r)2 + 1

τ

∫ t
t−τ E

Q(Vs)ds− EQ(Vt)
]
.

We note, that limτ→0 supt∈R+
|ετ(t)| = 0.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Calibration Results

• Semi-closed formulas available for call options

• September 30th 2011 for underlying EURUSD on the whole
volatility surface (14 maturities from 1M to 10Y, 5 strikes: ATM,
25D call/put, 10D call/put)

• 44% reduction of the average absolute calibration error: 46bp
for delayed Heston, 81bp for Heston



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Variance & Volatility Swaps Pricing

• Realized variance: VR := 1
T

∫ T
0 Vsds

• Kvar = EQ[VR], Kvol = EQ[
√
VR]

• Brockhaus & Long approximation: E[
√
Z] ≈

√
E[Z]− V ar[Z]

8E[Z]3/2



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Variance & Volatility Swaps Pricing

• Using time-changed Brownian motion representation for con-
tinuous local martingales, we get closed formula for VarSwap
and VolSwap fair strikes

• xt := −(V0 − θ2
τ )eγ−γτ t + eγt(Vt − θ2

τ )

• dxt = f(t, xt)dW
Q
t , xt = ŴTt, Tt =< x >t=

∫ t
0 f

2(s, xs)ds



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Variance & Volatility Swaps Pricing

• θ2
τ := θ2 + ατ(µ−r)2

γ , γτ := α+ γ + α
γττ

(1− eγττ)

• Vt = θ2
τ + (V0 − θ2

τ )e−γτ t + e−γtŴTt = EQ[Vt] + e−γtŴTt

The parameter θ2
τ can be interpreted as the delayed-adjusted

long-range variance. We note, that θ2
τ → θ2 as τ → 0.

The parameter γτ can be interpreted as the delayed-adjusted
mean-reverting speed. We note, that γτ → γ as τ → 0.



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Volatility Swap Hedging

• Price Processes:

• VarSwap: Xt(T ) := E
Q
t [VR],

• VolSwap: Yt(T ) := E
Q
t [
√
VR],

• VR := 1
T

∫ T
0 Vsds



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

• Portfolio containing 1 VolSwap and βt VarSwaps:

Πt = e−r(T−t)[Yt(T )−Kvol + βt(Xt(T )−Kvar)]

• If It :=
∫ t
0 Vsds is the accumulated varinace at time t, then:

Xt(T ) = E
Q
t [ItT + 1

T

∫ T
t Vsds] := g(t, It, Vt)

Yt(T ) = E
Q
t [
√
It
T + 1

T

∫ T
t Vsds] := h(t, It, Vt)



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Formulas)

Volatility Swap Hedging

• We compute the infinitesimal variations (using the fact that
Xt(T ) and Yt(T ) are martingales):

dXt(T ) = ∂g
∂Vt
δ
√
VtdW

Q
t

dYt(T ) = ∂h
∂Vt
δ
√
VtdW

Q
t

dΠt = rΠtdt+ e−r(T−t)[ ∂h∂Vt + βt
∂g
∂Vt

]δ
√
VtdW

Q
t

⇒

βt = −
∂h
∂Vt
∂g
∂Vt

= −
∂Yt(T )
∂Vt

∂Xt(T )
∂Vt

-hedge ratio



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps (Numerical Results)

We take the parameters that have been calibrated above (vanilla
options on September 30th 2011 for underlying EURUSD, matu-
rities from 1M to 10Y, strikes ATM, 25D Put/Call, 10D Put/Call),
namely

(v0, γ, θ
2, δ, c, α, τ)=(0.0343,3.9037,10−8,0.808,−0.5057,71.35,0.7821).

We plot the naive Volatility Swap strike
√
Kvar and the adjusted

Volatility Swap strike
√
Kvar − V arQ(VR)

8K
3
2
var

along the maturity di-

mension, as well as the convexity adjustment V arQ(VR)

8K
3
2
var

:



Naive VolSwap vs. Adjusted VolSwap Strikes



Convexity Adjustment



Initial Hedge ratio β0(T )



Delayed Heston Model: Pricing and Hedging of Volatility
Swaps

These results had been obtained together with my PhD student
Nelson Vadori and have been submitted to Wilmott J. as two
papers:

1. ’Delayed Heston Model: Improvement of the Volatility Surface
Fitting’

2. ’Pricing and Hedging of Volatility Swap in the Delayed Heston
Model: Part 2’



Discussion: Some Problems

• Explicit Expression for Ŵ (Tt) in classical Heston model?

CIR process: dσ2
t = k(θ2 − σ2

t )dt+ γσtdW (t).

Solution: σ2
t = e−kt(σ2

0 − θ
2 + Ŵ (Tt)) + θ2,

It would be easier to calculate many volatility derivatives (Cov,
Corr Swaps, etc.).

We know the expressions, though, for GBM and continuous-time
GARCH models.



Discussion: Expression for Ŵ (T (t)) in GBM

GBM: dS = µSdt+ σSdW.

Solution using CT: S(t) = eµt[S0 + Ŵ (T (t))], where

Ŵ (T (t)) = S0(eσW (t)−σ2t/2 − 1)−

martingale! Then, the solution looks like (familiar expression!):

S(t) = S0e
µteσW (t)−σ2t/2



Discussion: Expression for Ŵ (T (t)) in GARCH

Continuous-time GARCH: dS = a(L− S)dt+ σSdW (t).

Solution using CT: S(t) = e−at[S0 − L+ Ŵ (T (t))] + L,

where

Ŵ (T (t)) = S0[eσW (t)−σ2t/2 − 1]

+ L[(1− eat) + aeσW (t)−σ2t/2 ∫ t
0 e

ase−σW (s)+σ2s/2ds)]−

martingale (sum of two martingales)! Then, the solution looks
like:

S(t) = S0e
−ateσW (t)−σ2t/2

+ aLe−ateσW (t)−σ2t/2 ∫ t
0 e

ase−σW (s)+σ2s/2ds.



Discussion: Some Problems

• Covariance and Correlation Swaps for Delayed Heston Model?



Discussion: Some Problems

• Comparison of VolSwap and other volatility derivatives for
for Delayed Heston Model and Lévy-based stochastic volatility
model?

• Delayed Heston Model has 7 parameters

• Lévy-based stochastic volatility model has only 5 parameters



Conclusion

• Definition of Change of Time (CT) and Motivations

• Literature Review on CT Methods

• Change of Time Methods for Different Settings

• Applications in Mathematical and Energy Finance

• Delayed Heston Model: Var and Vol Swaps, Hedging

• Discussion: Some Problems



The End

Thank You for Your Time and Attention!
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