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Chapter 7

Establishing In Vivo-Like Activity in Rat Cerebellar Cells 
Maintained In Vitro

Bruce E. McKay, Reza Tadayonnejad, Dustin M. Anderson,  
Jordan D. T. Engbers, Fernando R. Fernandez, Mircea Iftinca,  
and Ray W. Turner 

Abstract

Purkinje cells of the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN) were among the 
first central neurons to be studied extensively through the use of in vitro preparations. Yet, the degree to 
which the patterns of action potential (“spike”) output recorded in these cells in vitro match those recorded 
in vivo has been a matter of debate and uncertainty. We have identified relatively simple steps that can be 
applied to the preparation of cerebellar tissue slices or to recording conditions that increase the probability 
of recording spike output in vitro that more closely matches that found in the live animal. Of particular 
importance are considerations of the rapid development of Purkinje cell structure and spike output proper-
ties during the period used for patch-clamp recordings, reintroducing key synaptic inputs to the in vitro 
preparation and establishing appropriate reversal potentials for ion species. We also report that storing 
water to be used for preparing medium in polyethylene carboys introduces a contaminant that decreases 
the amplitude of T-type Ca2+ currents and the ability to generate rebound burst discharge in DCN cells. 
Controlling for these factors restores spontaneous tonic firing, increases the gain to parallel fiber input, 
uncovers bistable rhythmic behavior in Purkinje cells, and increases the probability for generating rebound 
discharge in DCN cells.

Key words:  Brain slices, Cerebellum, Deep cerebellar nuclear neurons, Patch-clamp, Postnatal devel-
opment, Purkinje cells, Reversal potentials, Spontaneous spike output, Temperature, Water storage

One major aim of using in vitro preparations is to understand the 
properties of individual cells that shape the spontaneous activity of 
the neural circuit in which they function. The cerebellum was 
among the first cortical structures to receive the attention of elec-
trophysiologists given the early interest in motor systems. As such, 
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it has been somewhat of a proving ground for comparing  recordings 
that are obtained in the intact circuitry of anesthetized or awake 
animals in vivo to a wide range of in vitro techniques that span 
from dissociated cells to organotypic cultures through in vitro 
slices and even intact brainstem–cerebellar preparations (1–5). The 
cerebellum was also among the first central structures to see intra-
cellular, intradendritic, and whole-cell patch-clamp recordings, 
Ca2+ imaging in vitro, and recently 2-photon imaging in vivo (6–11). 
As for many other areas, our understanding of the activity of cere-
bellar neurons in vivo has also progressed from one of interpreting 
all unit discharge as being synaptically driven, i.e., that parallel fiber 
input elicits all “simple” action potentials (“simple spikes”) in 
Purkinje cells, to recognizing that intrinsic membrane properties 
allow many neurons to spontaneously discharge spikes. For 
instance, we now know that Purkinje cell simple (Na+-dependent) 
spikes occur spontaneously both in vitro and in vivo in the absence 
of synaptic inputs, with physiological extracellular K+ levels and 
without chemical excitatory stimulation (1–3, 12–15). Establishing 
the conditions necessary to recreate physiological (in vivo) activity 
patterns in vitro has proven to be a learning process as new tech-
niques and preparations have been applied.

The relationship between the spontaneous activity of cerebellar 
cells recorded in vitro to those found in vivo can often be unclear 
and at times so different as to divide opinions on what constitutes 
a physiologically relevant output. This has proven to be particularly 
true for Purkinje cells, in which a slow oscillatory trimodal activity 
recorded in vitro (10, 16, 17) does not match the relatively tonic 
firing pattern reported in vivo (14, 18) (for a description of tri-
modal output, see Results (Sect. 4.1) and Fig. 6). Interpreting 
some of these results will be complicated by the use of anesthetics 
in vivo (19–21), while the use of patch-clamp recordings for in vitro 
analyses often requires the use of early postnatal animals, increas-
ing the potential for Purkinje cell activity recorded in vitro to differ 
from the adult animals used for in vivo recordings. A similar dis-
crepancy has arisen for the activity of “deep cerebellar nuclei” 
(DCN) cells, where the potential to generate a rebound spike burst 
following inhibitory synaptic input (22, 23) or for T-type voltage-
activated Ca2+ channels to contribute to rebound responses is still 
under investigation (24–27). Through our work on in vitro tissue 
slices of rat cerebellar Purkinje cells and their downstream targets 
in the DCN, we have identified several key considerations that 
allow one to record activity in vitro that is much more in line with 
that reported in vivo for these output cells. This chapter reviews 
several facets of maintaining cerebellar slices in vitro and applying 
patch-clamp recording techniques that optimize the ability to 
record activity more representative of that found in vivo.
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

Our work has centered on cerebellar cortical Purkinje neurons and 
large diameter (presumed excitatory output) neurons contained in 
the DCN to understand the contributions of intrinsic properties 
and synaptic inputs to the firing properties of these neurons. To 
provide perspective on the connectivity and central importance of 
these cell types, we include here a brief overview of cerebellar cir-
cuitry (for a more detailed description, see (28)). Inputs to the 
cerebellum ascending from the brainstem arrive as two principal 
types: climbing fibers that originate in the inferior olive and mossy 
fibers that originate from numerous structures that include the spi-
nocerebellar, vestibular, reticular, and pontine nuclei. Climbing 
fibers synapse onto the somata and proximal dendrites of upward 
of ten Purkinje neurons within the cerebellar cortex. Notably, indi-
vidual adult Purkinje cells receive input from only a single climbing 
fiber, but this input is one of the most powerful excitatory synaptic 
inputs within the central nervous system. Mossy fibers send col-
lateral branches to cells of the DCN (the fastigial [medial]), glo-
bose/emboliform (interpositus), and dentate (lateral) nuclei) and 
ascend upward to synapse onto granule cells within the granular 
layer of cerebellar cortex. The axons of granule cells ascend into 
the molecular layer (superficial to the Purkinje cell layer) to bifur-
cate and produce parallel fibers oriented parallel to the surface of 
the cortex but perpendicular to the orientation of Purkinje neuron 
dendrites. This architecture enables individual parallel fibers to 
contact hundreds of Purkinje neurons, with each Purkinje neuron 
receiving inputs from 50,000 to 100,000 parallel fibers. Also con-
tained within the cerebellar cortex are two inhibitory interneurons: 
basket cells, whose axon terminals form plexuses known as 
“pinceaux” around the axon hillock of Purkinje neurons, and stel-
late cells, which form inhibitory contacts on Purkinje cell dendrites. 
The third type of inhibitory cell in cerebellar cortex is Golgi cells 
located in the granular layer, with a major projection of inhibitory 
synapses to synaptic glomeruli. The sole output of the cerebellar 
cortex is the Purkinje cell axon. The axon descends through the 
white matter and uses the neurotransmitter g-aminobutyric acid 
(GABA) to form inhibitory synapses onto DCN cells (spinocere-
bellum, cerebrocerebellum) or onto neurons of the lateral vestibu-
lar nuclei (vestibulocerebellum). The DCN cells are embedded 
within the cerebellar white matter and provide the major output 
from cerebellum (29–31). Interestingly, DCN cells must convert a 
massive inhibitory projection from multiple Purkinje cells to an 
excitatory output to other motor nuclei. This translation is accom-
plished through the expression of distinct intrinsic biophysical 
membrane properties that provide the capacity to generate a 
rebound depolarization and increased spike firing following an 
inhibitory stimulus (32–34). The activity patterns of Purkinje cells 
are taken to be critical to theories of cerebellar function, as a change 
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in Purkinje cell firing frequency, whether it is a transient elevation 
in spike frequency or a pause in firing, will impact how DCN cells 
respond to cortical input (7, 35–38).

Sprague–Dawley rats were purchased from Charles River 
Laboratories (Charles River, Quebec, Canada) as rat dams with lit-
ters at an age of postnatal day (P) 10, or timed-pregnant to arrive 
during late gestation. Rats were maintained in standard colony 
conditions within the Animal Resources Centre. All procedures 
were completed in accordance with the guidelines established by 
the Canadian Council on Animal Care.

Chemicals were obtained from Sigma (St. Louis, MO; www.
sigmaaldrich.com) unless otherwise stated. The composition of 
artificial cerebrospinal fluid (aCSF) was (in mM) 125 NaCl, 3.25 
KCl, 1.5 CaCl2, 1.5 MgCl2, 25 NaHCO3, and 25 d-glucose, pH 
adjusted to 7.4 upon gassing with carbogen (95% O2, 5% CO2 (see 
Sect. 3.2.2 for rationale). On-cell (cell-attached) recordings were 
obtained using patch electrodes containing either a 
4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES) 
pH-buffered medium similar to aCSF (in mM) (150 NaCl, 3.25 
KCl, 1.5 CaCl2, 1.5 MgCl2, 10 HEPES, and 25 D-glucose, pH 
7.4) or the K-gluconate-based internal solution below. The patch-
recording electrolyte for whole-cell current-clamp membrane 
potential (Vm) recordings consisted of (in mM) 130 K-gluconate, 
0.1 ethylene glycol tetraacetic acid (EGTA), 10 HEPES, 7 NaCl, 
0.3 MgCl2, and pH = 7.3 upon adjustment with 1 N KOH. 5 mM 
di-tris-creatine phosphate, 2 mM Tris-ATP, and 0.5 mM Na-GTP 
were added daily to the recording electrolyte from frozen stock 
solutions. Patch electrode solution for voltage-clamp recordings of 
T-type Ca2+ channel current consisted of (mM) 100 CsCl, 10 KCl, 
10 EGTA, 7 NaCl, 0.3 MgCl2, and 10 HEPES, with tetrodotoxin 
(TTX, 200 nM), CsCl (1–2 mM), and tetraethylammonium (TEA, 
5 mM) in the superfusate (no junction potential subtracted in volt-
age-clamp recordings). Neurobiotin (0.1%; Vector Laboratories, 
Burlingame, CA, USA; www.vectorlabs.com) was added to the 
patch pipette solution in some experiments to enable visualization 
of cell morphology during subsequent histological processing.

Brain slices were prepared using a vibratome (Ted Pella, Redding, 
CA, USA; www.tedpella.com) or a VT1000S (Leica Biosystems, 
Nussloch, Germany; www.leica-microsystems.com). Visualization 
of brain slices was performed with a Axioskop FS-2 microscope 
(Zeiss, Oberkochen, Germany; www.zeiss.com/smt) equipped 
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

with infrared-differential interference contrast (IR-DIC) optics 
and a Newvicon camera (Dage MTI, Michigan City, IN, USA; 
www.dagemti.com) linked to a video monitor (Hitachi VM9012U). 
Recordings were made with a variety of amplifiers available from 
Axon Instruments (Molecular Devices Inc., Sunnyvale, CA, USA; 
www.moleculardevices.com) including Multiclamp 700 series 
amplifiers, Axoclamp 2 series amplifiers, and Axopatch 200 series 
amplifiers. pCLAMP software (versions 8 through 10; Molecular 
Devices) was used for data collection, and some data analysis, with 
select analyses, was completed in MATLAB (Mathworks, Natick, 
MA, USA; www.mathworks.com). Pipettes were pulled from thick-
walled (fiber-filled) borosilicate glass (1.5 mm O.D.; A-M Systems, 
Sequim, WA, USA; www.a-msystems.com) with a Sutter P-87 
puller (Sutter Instrument Company, Novato, CA, USA; www.sut-
ter.com). Electrodes had DC resistances in aCSF of 4–8 MW for 
somatic recordings and 8–12 MW for dendritic recordings. A bipo-
lar concentric stimulating electrode (Frederick Haer, Bowdoin, 
ME, USA; www.fh-co.com) was used to evoke synaptic responses 
using stimuli delivered with an isolated stimulator (Model DS2, 
Digitimer Ltd, Welwyn Garden City, England; www.digitimer.
com). In some experiments, the stimulator was controlled by a 
Master-8 (A.M.P.I., Jerusalem, Israel; www.ampi.co.il). Confocal 
imaging was done using a FV300 BX50 confocal microscope with 
FluoView software (Olympus, Center Valley, PA, USA; www.olym-
pusamerica.com).

Detailed descriptions of our methods can be found in the previous 
chapters (23, 26, 39–41) but are summarized here.

Rats were anesthetized with a single subcutaneous injection of 
sodium pentobarbital (65 mg/kg; MTC Pharmaceuticals, Joliet, 
IL, USA; www.mtcresearch.com). After establishing that a sufficient 
depth of anesthesia was reached, with no overt responses to tail or 
foot pinch, the rat was decapitated, the posterior skull removed, 
and the cerebellum dissected out and immediately bathed in ice-
cold aCSF (Sect. 2.2). For Purkinje cell recordings, the cerebellum 
was blocked in the sagittal plane by removing one cerebellar hemi-
sphere with a scalpel cut and then mounted with cyanoacrylate 
glue on an ice-cold vibratome cutting tray (Sect. 2.3). Parasagittal 
tissue slices of 300-mm thickness were obtained from the cerebellar 
vermis in carbogenated ice-cold aCSF. Parasagittal tissue sections 
from the cerebellar vermis were used exclusively as slices in this 
plane are more likely to maintain the flat dendritic trees of Purkinje 
cells. For DCN cell recordings, either parasagittal or coronal 
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 sections (each of 200-mm thickness) were prepared. We have not 
found it necessary during slice preparation to use aCSF containing 
high sucrose or glutamate receptor antagonists to obtain high-
quality slices (compare Chaps. 1-Trapp and Ballanyi (42), 3-Moore 
et al. (43), and 8-Sanchez-Vives (44)). Following cutting, slices 
were incubated at 35°C for 30–45 min and subsequently main-
tained at room temperature (~22°C) for no more than 4–5 h.

Slices were transferred to a heated (35°C) recording chamber on the 
stage of the Zeiss Axioskop FS-2 microscope (Sect. 2.3) and kept in 
place with a nylon-strung platinum harp (see also Chap. 1-Trapp and 
Ballanyi (42)). The tissue was continuously perfused with aCSF at 
~2–3 ml/min as a submerged preparation. Cells were visualized with 
IR-DIC optics and a camera linked to a video monitor (Sect. 2.3). 
Juvenile Purkinje cells from P0 to ~ P9 rats were identified by their 
comparatively larger somata relative to neighboring cell types and 
their intermediate position between the internal and external gran-
ule cell layers. Adult Purkinje cells were identified by their character-
istic morphology and position within the cerebellar cortex. To ensure 
a diverse sample of Purkinje cells, recordings were not restricted to 
specific lobules or regions within lobules. Unless otherwise noted, all 
DCN cell recordings were obtained from the interpositus nucleus. 
The spontaneous behavior of Purkinje cells and DCN neurons was 
examined in the absence of holding current. The occurrence of 
rebound bursts in DCN cells was defined as including all spikes fol-
lowing an inhibitory stimulus that exceeded a rate of more than two 
standard deviations beyond the mean tonic firing rate for 1 s preced-
ing the stimulus (23). Peak rebound frequencies were determined 
for the first five spikes immediately following a hyperpolarization and 
plotted as the increase above the preceding tonic firing level.

Whole-cell current-clamp data were acquired at a sampling rate of 
25 kHz and low-pass-filtered at 10 kHz, whereas voltage-clamp 
data were acquired at 10 kHz and low-pass-filtered at 2–5 kHz. 
Resting Vm of Purkinje cells was maintained at −70 mV with hyper-
polarizing current for most experiments. Recordings were accepted 
for use only for initial electrical “giga-seal” formations of ³1 GW 
and were immediately rejected, if series resistance after establishing 
the whole-cell configuration was >15 MW. After whole-cell “break-
in,” cells were rejected, if the average Vm during spontaneous activ-
ity was more depolarized than −45 mV. Series resistance was 
compensated with the bridge balance circuitry of the intracellular 
amplifier (Sect. 2.3). Outside-out patches were rejected, if they did 
not have a resistance of >1 GW as determined by a small voltage 
step during patch formation, or if current levels were unstable dur-
ing the first 30 s of recording. Outside-out patch recordings were 
rejected post hoc, if they had a resistance of <1 GW (as determined 
by a small voltage step) at the end of the experiment, or if rundown 
of current was evident.

3.1.2. Electrophysiology
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

Parallel fiber and climbing fiber responses were pharmacologically 
isolated with a mixture of the antagonist of NMDA-type ionotro-
pic glutamate receptors (2R)-amino-5-phosphonovaleric acid 
(AP5, 25 mM), the GABAA receptor antagonist picrotoxin (50 mM), 
and the GABAB receptor antagonist CGP 55845 (1 mM). Parallel 
fiber responses were evoked with the stimulating electrode 
(Sect. 2.3), positioned in the mid-molecular layer ~60 mm from the 
Purkinje cell soma, and were identified by their graded response to 
stimulus intensity (45). Climbing fiber responses were evoked with 
the stimulating electrode positioned in the granular layer ~40 mm 
from the Purkinje cell soma and were identified by their all-or-
none response to a threshold amount of stimulation (45).

GABAAergic inhibitory synaptic inputs to DCN cells were isolated 
pharmacologically with the ionotropic glutamate receptor antago-
nist DNQX (10 mM), AP5 (25 mM) and CGP 55845 (1 mM). 
Inhibitory postsynaptic potentials (IPSPs) were evoked by activat-
ing Purkinje cell afferents to DCN cells by stimulating just dorsal 
to the recording site and outside of the interpositus nucleus itself. 
Synaptic responses reversed polarity between −70 and −75 mV, 
which approximated the calculated equilibrium potential for 
Cl−ions (ECl) of −76 mV. For a few cells, stimulation resulted in 
antidromic activation of spike discharge. In these cases, the elec-
trode was repositioned such that only IPSPs were evoked, and if 
this was not successful, the cell was discarded. The intensity of 
stimulation was adjusted such that a single stimulus was sufficient 
to block the generation of an action potential in these spontane-
ously discharging neurons.

To obtain morphological data on recorded Purkinje cells, whole-
cell recordings were maintained for at least 10 min to ensure a 
complete wash-in of Neurobiotin via diffusion from the patch elec-
trode solution (Sect. 2.2). Following recording, slices were trans-
ferred to 4% paraformaldehyde and fixed for several days at 4°C. 
Slices were “washed” in 0.1 M phosphate buffer solution (PBS) for 
several hours; then placed in a solution of PBS, Triton X-100 
(0.1%), and streptavidin-Cy3 (1:1,500); and kept in the dark. Slices 
were gently agitated for several hours to ensure thorough exposure 
to streptavidin-Cy3 and then left overnight at 4°C. Slices were 
washed in PBS, mounted on poly-d-lysine gel-coated slides, cover-
slipped with antifade medium (90% glycerol/PBS/0.1% p-phe-
nylenediamine; pH 10), sealed with nail polish, and stored at 
−20°C. Purkinje cells were imaged on a confocal microscope 
(Sect. 2.3) with laser intensity set high enough to resolve individ-
ual spines. Images were acquired with a step size (z-axis) of 0.5 mm 
at a resolution of 1,024 × 1,024 and Kalman filtered.

3.1.3. Extracellular 
Synaptic Stimulation
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absent at 37°C, with all isoforms exhibiting a fast and equivalent 
rate of recovery (Fig. 1a) (67). We also found that the maximal 
Cav3 current in the HEK cells was increased by up to 210% when 
temperature was raised from room to physiological temperature 
(Fig. 1b) as previously reported in neuronal recordings (70, 71). 
This increase in current would be predicted to affect the spontane-
ous subthreshold activity of Purkinje cells (65) and rebound burst 
intensity in DCN cells (27). In fact, lowering the temperature from 
37°C to 21°C decreased the magnitude of rebound bursts in DCN 
cells over a range of prestep hyperpolarizations (Fig. 1c). The max-
imal rebound spike frequency attained immediately following a 
current-evoked hyperpolarization to −75 mV (equivalent to ECl) in 
“transient burst” DCN cells was reduced in half from 199 ± 23.8 Hz 
to 102 ± 17.9 Hz (n = 5) by shifting from 37°C to 21°C (Fig. 1c). 
The rate of tonic firing present at a resting Vm of −60 mV was also 
reduced from 13 ± 2.7 Hz to 6 ± 1.2 Hz (n = 5). Similarly, a slow 
“trimodal” oscillation often detected in rat Purkinje cells in vitro at 
physiological temperatures (10, 17) was reversibly blocked when 
temperature was shifted between physiological and room tempera-
ture (17) (B.E. McKay, unpublished observations). Maintaining a 
temperature between 33°C and 35°C is thus recommended for 
recording activity that reflects the output capability of a given cer-
ebellar cell in vitro.

A second important consideration is the composition of the 
 electrolyte when using patch electrodes for whole-cell recordings. 
In this patch-recording configuration, there is a substantial, if not 
complete, ionic exchange between the cell (at least close to the 
soma) and electrode within minutes of forming low resistance 
access to its cytosol. This is important in that the concentration 
gradient for ions between the inside and outside of a cell is estab-
lished entirely by the patch electrode electrolyte and aCSF, thereby 
defining the reversal potentials (Erev) for the major ions Na+, K+, 
Ca2+, and Cl−. This is key to DCN cell recordings where the mag-
nitude of GABAA receptor-mediated IPSPs depends on the value 
of ECl, which will define the extent to which inhibition can pro-
mote recovery from Cav3 channel inactivation that occurs near 
resting Vm.

To adjust the recording electrolyte, one must balance ionic 
concentrations with other electrode contents and still maintain a 
correct osmolarity and pH at physiological temperatures. After 
carefully considering all factors, we converged on a set of solutions 
that provide an acceptable range of Erev for all ionic species. The 
composition of aCSF was (in mM) 125 NaCl, 3.25 KCl, 1.5 CaCl2, 
1.5 MgCl2, 25 NaHCO3, and 25 d-glucose, which adjusts to a pH 
of 7.4 upon gassing with carbogen (95% O2, 5% CO2) (Sect. 2.2). 
The patch-recording electrolyte for whole-cell current-clamp Vm 
recordings consisted of (in mM) 130 K-gluconate, 0.1 EGTA, 10 

3.2.2. Reversal Potentials
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HEPES, 7 NaCl, 0.3 MgCl2, and pH = 7.3 upon adjustment with 
1 N KOH. 5 mM di-tris-creatine phosphate, 2 mM Tris-ATP, and 
0.5 mM Na-GTP were added daily to the patch electrode electro-
lyte from frozen stock solutions (Sect. 2.2). With these solutions, 
the calculated Erev at 35°C were ENa: +55 mV, EK: –97 mV, and ECl: 
−76 mV, with a theoretical junction potential of ~10 mV subtracted 
from all current-clamp recordings. We find that with these solu-
tions the tonic firing rate and rebound frequency increases in cer-
ebellar cells in vitro are equivalent whether recording in on-cell 
mode (when cell contents are undisturbed) or in whole-cell 
configuration (23).

Dialysis of cells by the patch-recording electrolyte will also redefine 
the Ca2+ buffering capacity of a cell. The influence of including 
 different concentrations of Ca2+ buffers (EGTA) in the patch elec-
trolyte (Sect. 2.2) can be readily seen in recordings of cerebellar 
cells. We found that increasing the concentration of EGTA from 
0.1–1.0 mM to 5–10 mM in whole-cell recordings from Purkinje 
cells increased repetitive Ca2+-Na+ spike bursts (40), a result that 
reflects a loss of the repolarizing influence of spike-activated after-
hyperpolarizations (AHPs). We also found that using internal 
EGTA above 0.1 mM can affect the ability for Ca2+ influx to acti-
vate AHPs in DCN cells, causing cells to shift to a slow oscillatory 
swing of Vm and high-frequency discharge (M. L. Molineux, unpub-
lished observations). Similar results were reported upon internal 
perfusion of another frequently used type of Ca2+ buffer, 1,2-bis(o-
aminophenoxy)ethane-N,N,N¢,N¢-tetraacetic acid (BAPTA) (55), 
block of either N-type Ca2+ channels (72) or SK-type K+ channels 
(55, 73), revealing a coupling between N-type Ca2+ influx and SK 
channels to generate a large portion of the AHP. The early conven-
tion of using 5 mM EGTA in patch-recording electrolyte then helps 
account for slow oscillatory swings of Vm reported in some of the 
first whole-cell patch recordings in DCN cells (74).

We have encountered another issue in preparing aCSF for tissue 
slices that proves to be critical to slice health and specifically to 
T-type Ca2+ currents and the responses to which these currents 
contribute. All of the water we use to prepare medium is generated 
by feeding distilled water through a Barnstead Nanopure Infinity 
unit (Series 8965) that is subsequently stored in a large volume 
Corning Pyrex aspirator bottle (i.e., Corning 1,220–5). With this 
arrangement, slices are consistently healthy and provide highly 
reproducible results. By comparison, we have on two separate 
occasions experienced difficulties with slices maintained in aCSF 
prepared from water that was stored for any period of time in a 
translucent rigid polypropylene carboy (i.e., Nalgene Rectangular 
Carboy, LDPE-4 or LPE polyethylene). This holds true for record-
ings from cerebellar Purkinje cells or DCN cells (Fig. 2) and for 

3.2.3. Cytosolic Ca2+ 
Buffering

3.2.4. Water Storage
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hippocampal CA1 pyramidal cells (R. W. Turner, unpublished 
observations). We have not tracked down the exact nature of the 
problem, but it may reflect the release of the endocrine disruptor 
Bisphenol A or its breakdown products from plastic containers. 
Indeed, these compounds have been reported to affect N- and 
L-type Ca2+ channels (75, 76), Ca2+-dependent CREB activation 
(77), and both KCa and ATP-sensitive K+ (KATP) channels (78). 

Fig. 2. Effects of storage of distilled water for slice superfusate on rebound frequencies and T-type Ca2+ currents in DCN 
cells. (a, b) Representative recordings and frequency plots for �transient burst� (a) and �weak burst� (b) cells in response 
to current-evoked hyperpolarizations (500-ms pulse duration) from a resting potential of �60 mV. The frequency of rebound 
bursts is reduced in both phenotypes by switching from arti�cial cerebrospinal �uid (aCSF) prepared from water stored in 
a Pyrex container to aCSF prepared from water stored for 3 days in a polyethylene carboy (translucent LDPE-4). Recordings 
of rebound responses were evoked from a prestep hyperpolarization to �80 mV. Insets show expanded views of rebound 
increases in frequency immediately following the hyperpolarization. On the right are plots of the mean values of rebound 
frequency above baseline �ring rates following a range of current-evoked membrane hyperpolarizations for the two 
sources of water (frequency of discharge: control vs. polyethylene signi�cant at p < 0.05 for most membrane voltages). (c) 
Voltage-clamp recordings of T-type Ca2+ currents evoked by voltage steps from �90 mV to �50 mV for DCN �weak burst� 
and �transient burst� cells. Note that perfusing aCSF containing water stored in a polyethylene carboy reduces T-type cur-
rent peak amplitude by a similar amount for either burst phenotype whether stored for 3 days or for 3 months. The capaci-
tance artifacts in LVA current recordings of C were digitally removed.
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

Here, we simply provide some tests to illustrate the magnitude of 
problems that can arise from the source of water used to prepare 
the superfusate.

Examples of rebound bursts recorded in a DCN ‘Transient 
Burst’ or ‘Weak Burst’ cell in aCSF prepared from water stored in 
a Pyrex container are shown in Fig. 2a, b. Conducting experiments 
in this medium consistently generated a rebound increase in spike 
frequency of ~250 Hz above baseline firing rates for transient burst 
cells (Fig. 2a) and ~30 Hz above baseline for weak burst cells 
(Fig. 2b) immediately following hyperpolarization through cur-
rent injection to a Vm of −80 mV for 500 ms. But after 10 min 
exposure to water that had been stored in a polyethylene carboy 
for 3 days, the rebound burst frequency decreased (Fig. 2a, b), 
with no significant effect on input resistance. When tested from a 
hyperpolarized level −15 mV below resting Vm (i.e., near 
ECl = −76 mV), the rebound frequency of transient burst cells was 
reduced by ~35% (Fig. 2a) and in weak burst cells by ~50% 
(Fig. 2b). Attempts to reverse these effects by subsequent return to 
aCSF prepared from water stored in Pyrex container failed to allow 
recovery of rebound bursts (n = 3; not shown). Storage of water in 
a polyethylene carboy for 3 months produced the same relative 
results, with no change in the magnitude of decrease in rebound 
frequencies (n = 11; data not shown). By comparison, cell health 
(as defined by the ability to obtain long-lasting stable whole-cell 
recordings) and rebound burst capacity were very consistent for 
either burst phenotype if water was stored in a Pyrex container for 
1 day or after months of storage.

The effects of polyethylene-stored water appear to reflect a 
change in the intrinsic excitability of DCN cells, as all recordings 
were conducted in the presence of AP5 (25 mM), DNQX (10 mM), 
and picrotoxin (50 mM) (Sect. 3.1.3). Given that previous work 
has shown that T-type Ca2+ currents are evoked in DCN cells sub-
sequent to imposed membrane hyperpolarizations (26, 27, 56, 
79), we extended these tests to Cav3 currents isolated under volt-
age-clamp. T-type Ca2+ currents were evoked using precondition-
ing voltage steps to −90 mV for 500 ms and then a step to −50 mV 
(Fig. 2c). We found that in aCSF prepared from water stored in a 
Pyrex container, T-type currents fell into two groups of 154 ± 44 
pA (n = 13) and 1,064 ± 161 pA (n = 11), as reported for recordings 
from weak burst or transient burst cells, respectively (27). However, 
perfusion of aCSF prepared from water stored in a polyethylene 
carboy for either 3 days or 3 months led to ~35–50% reduction in 
T-type current within 10 min (Fig. 2c). As found for rebound fre-
quency increases, the degree of reduction of Cav3 current by poly-
ethylene-stored water was again greater for “weak burst” cells 
(Fig. 2b, c).

These results indicate the presence of a contaminant released 
by polyethylene storage containers (at least of the LPDE-4 and 
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LPE classes) that affects the availability of Cav3 currents. The 
effects appear to be relevant to both Cav3.1 and Cav3.3 Ca2+ chan-
nel isoforms, as these have been shown to associate with “transient 
burst” and “weak burst” phenotypes in DCN cells, respectively 
(26). Nevertheless, the effects of the contaminant are not restricted 
to T-type currents, as we first detected effects by polyethylene stor-
age containers on the site for initiation of Na+ spike discharge in 
CA1 hippocampal pyramidal cells (R. W. Turner, unpublished 
observations). The time of exposure necessary to produce these 
effects can be very short, as exposing freshly distilled water to 
transport in a polyethylene container for as little as 10 min was 
sufficient to significantly alter the physiology of hippocampal slices. 
We have also encountered significant effects of this water on the 
general health and ability to patch-clamp cerebellar Purkinje cells, 
although this was not systematically documented (J. D. T. Engbers, 
unpublished observations). The source/storage of water used to 
prepare superfusate for slice experiments can thus affect ion chan-
nels that contribute to spike output patterns, potentially affecting 
the reproducibility of results between laboratories.

Purkinje cells in vivo are often reported to generate “simple spikes” 
(Sect. 1) at a constant rate of ~40 Hz that are punctuated by 
 climbing fiber-evoked complex spikes at a rate of ~1 Hz (14, 80). 
In contrast, Purkinje cells recorded in acute cerebellar slices in vitro 
tend to generate simple (Na+) spikes at substantially higher fre-
quencies and spontaneously generate a “trimodal” pattern of out-
put (10, 17). During trimodal output, Purkinje cells have three 
characteristic and sequential states that repeat in a cyclic manner: a 
period of Na+ spike output, a period of Ca2+-Na+ burst output (e.g., 
Na+ spikes grouped into high-frequency bursts via an underlying 
dendritic Ca2+ spike), and finally a silent period. The occurrence of 
spontaneous Ca2+-Na+ bursts in Purkinje cells in acute brain slices 
was described in the first in vitro recordings (9, 10) and has been 
widely studied over the past three decades as one of the normal 
patterns of spike output. However, the dissimilarity in in vivo ver-
sus in vitro Purkinje cell action potential discharge patterns has 
been taken by some investigators as evidence that Purkinje cells in 
acute brain slices are “unhealthy.” We found that there are two 
very significant differences between the typical Purkinje cell that is 
recorded in vivo and one recorded in vitro. These differences are 
the developmental stage of the animal, in which Purkinje cells are 
studied, and the state of activity of climbing fiber synaptic input 
(40, 41). We discuss below the importance of these two factors to 

4. Results

4.1. Reconciling  
In Vivo and In Vitro 
Activity of Purkinje 
and DCN Neurons
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

obtaining “in vivo-like” Purkinje cell patterns of action potential 
discharge in acute brain slices.

Purkinje cell recordings in vivo are typically conducted in adult 
animals, whereas in stark contrast, Purkinje cell recordings in vitro 
are typically obtained in brain slices prepared from animals that are 
at most only a few weeks old (typically <3 weeks). The choice of 
animal in both cases is based on the goal of cell identification. For 
in vivo electrophysiological recordings in adult animals, recording 
and stimulating electrodes are guided to specific types of neurons 
based on their location as predicted from a stereotaxic atlas relevant 
to mature animals. For in vitro electrophysiology, recording and 
stimulating electrodes are guided visually to the cell of interest, 
typically via video imaging using IR-DIC optics, with subsequent 
electrophysiological confirmation of neuronal identity (see also 
Chaps. 1-Trapp and Ballanyi (42), 3-Moore et al. (43), and 
8-Sanchez-Vives (44)).

Because visual identification of neurons is central to targeting 
neurons of interest and to obtaining a high-quality seal for patch-
clamp recording, factors that impair visualization of neurons must 
be minimized. A major factor here is the presence of glial cells and 
the development of perineuronal nets in the extracellular space that 
obscure the light path, which in rat cerebellum becomes increas-
ingly prominent beyond ~ P17 (81). Purkinje cell bodies and den-
drites are thus best visualized when tissue slices are obtained from 
rats younger than P17, even though it is possible to record from 
either region from much older animals (41). However, below P17 
the Purkinje cell is undergoing a massive growth of its dendrites 
and a remodeling of expressed ion channels, which both contrib-
ute to a remarkable change in electrophysiological properties over 
the period of time when acute tissue slices are typically prepared.

Cerebellar Purkinje cells are remarkable for the extent of their 
postnatal development (82, 83). At the time of parturition for rats 
and mice, Purkinje cells are small with only short multipolar peri-
somatic dendrites. They are poorly innervated and generate mun-
dane spike output patterns. Yet after only a few postnatal weeks, 
Purkinje cells have grown immensely, attaining the elaborate “flat 
dendritic tree” structure renowned in these cells (Fig. 3). In the 
adult, Purkinje cells are contacted by an overwhelming number of 
synaptic inputs and generate a wide array of spike output patterns. 
Recognizing the earliest time point at which Purkinje cells attain 
the structure, intrinsic properties, and synaptic physiology repre-
sentative of “mature” cells is key to balancing the benefits of study-
ing spike output in tissue slices that are young enough to enable 
adequate visualization of cells. One method for determining such 
time points is described below.

4.2. Young or Old 
Slices?

4.3. Postnatal 
Development  
of Purkinje Cell 
Morphology and 
Electrophysiology
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We completed a study of the development of the rat Purkinje cell 
which revealed the extent of postnatal changes for a variety of 
Purkinje cell morphological and electrophysiological characteris-
tics (41). To fully illustrate the developmental sequence and iden-
tify boundary points consistent with adult Purkinje cells, we applied 
simple curve fits to our data set. To illustrate, consider the growth 
of the dendritic tree presented in Fig. 3. Purkinje cells begin their 
postnatal development with a perisomatic dendritic configuration, 
with multiple dendrites extending <50 mm from the soma (P0 
to ~ P9) (Fig. 3a). By P9, some Purkinje cells have completely 
retracted their perisomatic dendrites and developed a single pri-
mary stem dendrite (Fig. 3a). The principal dendrite increases 
markedly in size over the next ~1 week, rapidly reaching its adult 
configuration (Fig. 3a). When the amount of adult-like character 
of dendritic structure (e.g., percentage of terminal dendritic area) 
is plotted against postnatal age, it is apparent that Purkinje cell 
development can be divided into 3 principal stages: an immature 
stage, a transition stage, and an adult stage (Fig. 3b, c).

4.3.1. Purkinje Cell 
Structural Development

Fig. 3. Development of Purkinje cell morphology. (a) Two-dimensional projections of stacks of confocal images of rat 
Purkinje cells from postnatal day (P) 0 to P90 �lled with Neurobiotin and detected with streptavidin-Cy3. (b) Time course 
of development for mean cross-sectional surface area of Purkinje cell dendrites normalized to adult values (age incre-
ments are P0, 3, 6, 9, 12, 15, 18, 23, 29, 35, 41, 53, 83) to illustrate the accuracy of a sigmoidal curve �t to the anatomical 
data. (c, d) Plot of percentage of adult-like character versus postnatal age for a �ctive characteristic to de�ne Purkinje cell 
developmental windows and �t parameters. (c) Postnatal age windows corresponding to immature, transition, and adult 
stages separated by dashed lines. (d) The sigmoidal curve �t is valuable for de�ning the postnatal age range during which 
a characteristic matures from 10% to 90% adult-like character and the postnatal age at which a characteristic reaches 
50% adult-like character (P1/2) (Panels (a) and (b) are adapted with permission from (41)).
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

The exponential growth of the Purkinje cell dendrite is extremely 
important to deciding the appropriate age of rats from which slices 
should be prepared. As Fig. 3 clearly illustrates, an exponential 
growth of the dendrite begins at ~ P12 and persists until ~ P18, 
after which there is an approach to a plateau in further growth. 
This information must be considered together with the fact that 
development of perineuronal nets and glial investment in the cer-
ebellum occurs at ~ P17 (81). Thus, to optimize the visualization 
of neurons, many investigators choose to study Purkinje cells prior 
to ~ P17. The extent to which this choice affects slice recordings is 
emphasized by the finding that changes in Purkinje cell  morphology 
were paralleled by a shift in the intrinsic membrane properties as 
well as patterns of evoked and spontaneous spike output (41). 
Throughout the stable immature stage (£P9), intracellular depo-
larizing current pulses evoked a transient low-threshold burst dis-
charge of action potentials followed by low-frequency action 
potentials (Fig. 4a). However, during the transition stage (P15), 
Purkinje cells progressed through an underdeveloped form of 
repetitive high-threshold bursts (Fig. 4a). The pattern of output 
ultimately matured to a stable adult pattern (P60) that consisted of 
a series of spikes that gradually inactivated and that lead into a 
period of repetitive high-threshold Ca2+-Na+ burst output (repeti-
tive somatic Na+ spikes terminated by a dendritic Ca2+ spike) 
(Fig. 4a).

The Na+ spike and Ca2+-Na+ burst characteristics within these 
spike phenotypes were quantified and revealed a similar 3-stage 
developmental sequence (Fig. 4) (41). We found that the Na+ spike 
waveform began as a broad and low amplitude event with no dis-
cernible fast AHP and matured to a large amplitude spike with an 
extremely narrow half-width and robust fast AHP by ~ P18 
(Fig. 4b–d) (41). The maturation of Ca2+-Na+ burst output charac-
teristics was equally impressive, first appearing in select P12 cells 
coincident with the presence of a significant dendritic structure 
and decrease in input resistance (Figs. 4c, d and 5a–c) (41). With 
increasing age, the duration of Ca2+-Na+ bursts increased, and the 
Na+ spikes within bursts were generated at higher frequencies and 
in greater numbers (Figs. 4c–e and 5c) (41). In a similar manner, 
the number of cells that exhibited spontaneous trimodal activity at 
physiological temperatures increased exponentially from ~ P12 
through P18 and thus at a rate that paralleled the development of 
dendritic structure and changes in spike output (Fig. 4f).

Given the important relationship between dendritic surface 
area, cell input resistance, distribution of ion channels, and the syn-
apses associated with an ever expanding dendrite, this time period 
is associated with marked variability in spike properties in general 
and overall an “immature” phenotype of spike output characteris-
tics. Although such rapid change in cell structure and spike output 
properties presents an interesting window of opportunity to address 
specific neurobiological questions, it is not suitable for obtaining 

4.3.2. Purkinje Cell 
Electrophysiological 
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“adult-like” or “in vivo-like” spike output from Purkinje cells. The 
differences in spike output patterns of immature and mature 
Purkinje cells in fact help reconcile important differences between 
Purkinje cells studied in a variety of acute and chronic preparations. 
For instance, Purkinje cells that are extracted from late-embryonic 
or early postnatal animals and then maintained for long periods in 
culture have a low-threshold bursting pattern of spike output simi-
lar to that seen in Purkinje cells in acute slices prepared from < P9 
animals (41, 66). In contrast, the high-threshold bursting pattern 
is noted only in Purkinje cells measured in acute slices extracted 

Fig. 4. Development of Purkinje cell electrophysiological characteristics. (a) Representative examples of Purkinje cell spike 
output in response to square wave current injections during the immature stage (P9), transition stage (P15), and adult 
stage (P60). (b) Representative single Na+ spikes from different ages superimposed on the same time and voltage scales. 
(c) Representative single Ca2+-Na+ bursts from different ages evoked during square wave current pulses. (d�f) Time 
courses of development for Na+ spike characteristics. (d) Ca2+-Na+ burst characteristics (e) and the incidence of expression 
of a trimodal pattern of spontaneous output (f) (age increments as in Fig. 4b). The plot in (d) is a composite analysis drawn 
from data for the threshold for spike discharge, spike frequency at threshold, rate of repolarization, and AHP area. The plot 
in (e) is a composite analysis drawn from data for burst duration, Na+ spike frequency within bursts, and the number of 
spikes per burst (Adapted with permission from (41)).
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

the ability for strong depolarizing inputs to toggle a Purkinje cell 
between “up” and “down” states (40, 89, 90), as noted by some 
investigators in vivo (19, 37).

Importantly, we found that all of these effects could be repro-
duced by selectively activating the postsynaptic membrane through 
repetitive intracellular injection of current designed to simulate the 
climbing fiber excitatory postsynaptic current (EPSC) (40). These 
tests by us demonstrated that the influence of climbing fiber inputs 

Fig. 6. Climbing �ber discharge determines pattern of spontaneous output, restoring in vivo-like patterns of Purkinje cell 
activity in cerebellar slices. (a) The trimodal pattern consists of a Na+ spike phase (tonic), a Ca2+-Na+ burst phase (burst), 
and a quiescent phase (silent (S)). The tonic phase is subdivided into tonic-early (TE) and tonic-late (TL). (b�d) Electrically 
evoked climbing �ber discharge at 1 Hz (arrows) abolishes the burst phase of trimodal output. During the tonic phase, 
climbing �ber discharge results in either sustained sodium spike output (b) or periodic transitions between �up� and 
�down� states (c). During the silent phase, climbing �ber discharge activates complex spike EPSPs only (d). (e) Expanded 
views of spike output during a climbing �ber-evoked downstate to upstate transition (left panel) and an upstate to down-
state transition (middle panel). The end of a spontaneous Ca2+-Na+ burst is shown for comparison (right panel). (f) Plots of 
the incidence of the four responses to climbing �ber discharge. (g) Na+ spike frequency histograms for spontaneous output 
(left panel) and during climbing �ber discharge at 1 Hz (right panel) for a representative Purkinje cell. The dashed line in 
the spontaneous histogram corresponds to the peak frequency count of the climbing �ber histogram. (h, i) Average spike 
frequency (h) and peak Na+ spike voltage (i; upper traces) and AHP troughs (i; lower traces) during trimodal activity and 
after initiating CF discharges. (j) Average membrane voltages during TE, TL, and S phases of trimodal output, spontaneous 
Ca2+-Na+ bursts (B) and burst AHPs (bAHPs), and during CF-evoked �up� (U) and �down� (D) states. (a�e) and (g) are from 
the same Purkinje cell. Purkinje cells per data point for (f, h�j), n = 10 (Adapted from (40)).
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on Purkinje cell firing can be achieved in the absence of any 
 synaptic inhibitory influence (40). These data provide further evi-
dence that the patterns of spike output measured from Purkinje 
cells in vitro are not necessarily due to health considerations but 
rather due to the absence of climbing fiber input that proves to 
exert a rapid and substantial net inhibitory influence on intrinsi-
cally generated trimodal activity.

An important additional effect of climbing fiber input was that the 
resulting lower frequency of Na+ spike output was associated with 
a markedly improved gain of parallel fiber inputs in vitro (Fig. 7) 
(40, 89), as had been reported in vivo (91–93). Thus, a lower Na+ 
spike frequency during low-frequency climbing fiber activation 
allowed small parallel fiber synaptic inputs to evoke a substantially 
greater relative increase in firing frequency than when applied to a 

4.7. Parallel Fiber Gain

Fig. 7. Enhancement of Purkinje cell gain and readout of parallel �ber inputs at low spike frequencies. (a�d) Representative 
recordings and plots of spike frequency when parallel �ber stimuli (arrows) are delivered during low frequency (a: ~60 Hz), 
high frequency (b: ~130 Hz), burst (c: ~160 Hz before and after parallel �ber stimulation), and during climbing �ber-
normalized spike output (d). Spikes preceding and following parallel �ber stimuli are assigned numbers <0 and >0, respec-
tively. (e) Bar plots of the mean increase in parallel �ber-evoked output during different frequencies of spontaneous �ring 
(as for data in a�e). (f�h) The increase in parallel �ber gain is due to positive feedback following a spike, consistent with a 
saddle homoclinic bifurcation during the transition from �ring to rest. (f) A triangular ramp depolarizing current injection 
from �75 mV (4 s, 100 pA/s) reveals hysteresis of spike �ring, with prolonged �ring to lower frequencies on the falling 
phase of the ramp (compare dashed lines). (g) Plots of spike frequency in a representative recording illustrating a continu-
ous F-I relationship only on the downstroke of the ramp, with a high initial threshold for spike discharge on the upstroke 
(vertical line) and lower spike frequencies during the downstroke associated with a region of high gain (compare slope of 
gray lines). Black lines illustrate the changes in �ring frequency as current injection increases (left panel) or decreases (right 
panel). (h) Plots of instantaneous gain as a function of �ring frequency for seven different Purkinje cells determined using 
the ramp protocol in (f), revealing the sharp increase in gain at lower frequencies of �ring (Adapted from (40) and (89)).
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7 Establishing In Vivo-Like Activity in Rat Cerebellar Cells Maintained In Vitro

cell exhibiting higher-frequency Na+ spike discharge or trimodal 
activity (Fig. 7a–e). Once again, these effects could be entirely 
reproduced by exclusively activating the postsynaptic membrane 
through current injections that only simulated parallel fiber or 
climbing fiber EPSCs (40). An analysis of the dynamics of Purkinje 
cell firing that could account for this activity revealed that Purkinje 
cells undergo a saddle-node bifurcation during the transition 
between rest and firing states and a saddle homoclinic bifurcation 
from firing to rest (89). This finding is supported by a hysteresis of 
spike firing in Purkinje cells, a property revealed during ramp depo-
larizing current injections as prolonged low-frequency firing only 
during the downstroke of the ramp (10, 89) (Fig. 7f, g). As noted 
above, Purkinje cells exhibit membrane bistability after climbing 
fibers normalize Na+ spike firing to a lower stable level, evident as 
bidirectional climbing fiber-induced transitions between rest and 
firing states (Fig. 6c). This bistable region proves to be associated 
with an extremely high gain in instantaneous spike output, pre-
dicted to be due to positive feedback (i.e., a depolarizing afterpo-
tential) following an action potential (Fig. 7g, h). Thus, the actions 
of climbing fiber activation on bistability and parallel fiber gain 
could be traced to intrinsic membrane properties that can be 
defined using models of the dynamics of spike firing (89).

To fully anchor the importance of preparing acute brain slices from 
rats that will yield “adult-like” spike output characteristics, it has 
merit to compare the time windows for developmental aspects 
identified above with those of cerebellar-dependent behaviors – the 
ultimate readout of “adult-like” cerebellar function. The adult 
 cerebellum underlies the control of posture and balance, the 
 coordination of limb positions, and the learning of some condi-
tioned responses. Although many parts of the brain are expected to 
contribute to even the simplest behaviors, several behaviors that 
are significantly dependent on cerebellar function have been 
identified by means of focal X-irradiation to the cerebellum. These 
include postural control (e.g., as measured via pelvis elevation dur-
ing the quadruped stance), balance control (e.g., noted during 
rearing without forelimb support), coordination of limb position 
(e.g., observed during the mid-air righting response and by mea-
suring the number of falls from a narrow plank due to foot mis-
placements), and conditioned eyeblink learning (82, 94). The 
development of cerebellar-dependent behaviors proves to follow 
the 3-stage sequence identified above for cellular metrics of cere-
bellar maturation. The progression of behavioral maturation 
through the 3 stages is also right-shifted by several days relative to 
the maturation of cellular parameters, ostensibly suggesting that a 
critical amount of maturation in cerebellar structure and function 
must occur prior to the generation of mature cerebellar-dependent 
behaviors. Of the behaviors noted above, conditioned eyeblink 

4.8. Purkinje Cell 
Properties Versus 
Behavioral 
Development
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learning appears to define the endpoint of behavioral maturation of 
the cerebellum. Specifically, it has been shown in rats that at P17 
the eyeblink response cannot be conditioned, at P20 the acquisi-
tion of conditioning occurs at an intermediate rate, and at P24 the 
rate of acquisition appears mature (95). The maturation of the 
cerebellar-dependent conditioned eyeblink response toward the 
end of the fourth postnatal week in rats also corresponds nicely to 
the maturation identified above for cellular parameters, underscor-
ing the importance of preparing cerebellar tissue slices from 
“behaviorally adult-like rats” near the fourth postnatal week.

In summary, the acute cerebellar slice preparation can yield 
Purkinje cells with in vivo-like firing properties when due consider-
ation is given to postnatal development and the importance of reg-
ular activation of the climbing fiber synapse. When cerebellar slices 
are prepared from rats at least ~4 weeks old and regular (~1 Hz) 
climbing fiber stimulation is provided to the cell, in vivo-like pat-
terns of Purkinje cell action potential discharge can be obtained 
in vitro. In particular, the ability to block the trimodal pattern and 
restore tonic firing using only intracellular injection of simulated 
climbing fiber EPSCs provides a simple and efficient means to pro-
duce in vivo-like patterns of spike output in Purkinje cells.

A final consideration in analyzing activity in acute (cerebellar) slice 
preparations is the growing recognition that one must also take 
into account the fact that neurons in the awake and behaving ani-
mal are constantly bombarded by synaptic inputs (96, 97). The 
associated increase in membrane conductance can cause the neu-
rons to enter a high conductance state with a lower membrane 
time constant (97, 98), bringing about a change in the spatiotem-
poral dynamics of neurons that can affect how inputs are processed 
and output is generated (96, 99–101). Above, we discussed how 
injection of current waveforms in vitro can mimic the effects of 
single synaptic inputs on spike output. However, this method can-
not replicate the effects of conductance changes associated with a 
large number of inputs, as would be seen in vivo. A relatively new 
method, called dynamic clamp (Sect. 3.1.5), allows for the addi-
tion of artificial conductances to a neuron in vitro (102).

Unlike current-clamp protocols, where current is set to a con-
stant level, dynamic clamp uses a feedback loop to adjust current 
levels as a function of membrane voltage, simulating a membrane 
conductance. To perform accurately, this computation must be 
made in real time requiring either specialized hardware or a com-
puter with a real-time operating system and software. A well-devel-
oped software alternative is RTXI, which is a result of the merging 
of three different open-source dynamic clamp systems (Sect. 3.1.5) 
(46–50). Dynamic clamp can be used to examine how in vivo-like 
inputs affect information processing in neurons (99–101, 103, 
104). In the cerebellum, several groups have used dynamic clamp 
to examine the origin of the complex spike in Purkinje cells (36), 

4.9. Background 
Conductances In Vivo
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the contribution of SK-type K+ channels to spike output (73), and 
the effect of synaptic input on Purkinje cell (103) and DCN cell 
output (104). For example, to determine the different effects of 
NMDA and AMPA inputs on DCN cell output, Gauck and Jaeger 
(104) used dynamic clamp to simulate different sets of synaptic 
conductances (Fig. 8a–c). When these conductances were added to 
the DCN cell, different combinations of inputs produced different 
spike outputs (Fig. 8d). With dynamic clamp, conductances being 

Fig. 8. Use of dynamic clamp to examine the contribution of different types of synaptic 
input to spike output. (a�c) Different sets of simulated synaptic conductances were used 
as stimuli to DCN cells. In each case, either constant or amplitude-modulated excitatory 
(AC or AS, respectively) or inhibitory (GC or GS) conductances were used in different combi-
nations. (d) When presented to the same neuron, the different stimuli produced spike 
trains. If a constant inhibitory conductance was present, there was a large reduction in 
spike output. However, both amplitude-modulated and constant excitatory conductances 
resulted in similar outputs when presented in combination with amplitude-modulated 
inhibitory conductance, suggesting that spike output is being controlled by the inhibitory 
conductances. (e, f) Spike-triggered averages (STA) of the synaptic conductances con�rm 
that spike output is a result of a decrease in inhibition, rather than increases in excitation 
(Adapted with permission from (104)).
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added to the neuron can be analyzed, so spike-triggered averages 
of the synaptic inputs were performed to determine how features 
of the synaptic inputs govern neuronal output (Fig. 8e, f). It was 
observed that in cases where inhibitory conductance was not con-
stant, spikes resulted from a decrease in inhibitory conductance, 
rather than an increase in excitation. This allowed the authors to 
make inferences about how DCN neurons could process inhibitory 
inputs from Purkinje cells in vivo.

This review exemplifies with studies on two types of cerebellar cells 
that it is possible for neuronal spike responses measured in vitro to 
approach that expected for in vivo recording conditions. However, 
it is necessary to consider factors relevant to normal cell activity, 
including temperature and the ionic reversal potentials established 
by the patch-recording electrolyte. For cerebellar recordings, 
specific attention must be paid to the remarkable postnatal devel-
opment of Purkinje cells over the time frame often used for patch 
recordings and in restoring climbing fiber input to block an intrin-
sic trimodal pattern of activity that will otherwise emerge in vitro. 
Once these steps are taken, in vitro recordings can provide exten-
sive insight into aspects of membrane excitability (i.e., Purkinje cell 
bistability, climbing fiber-induced toggling, or parallel fiber gain) 
that can be more difficult to record or quantify in the higher con-
ductance state of cells within an active network.
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