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Abstract

This paper explores real options methodology as a risk management tool. In-
stead of characterizing the value of a real option to an organization as some
potentially unrealizable notional market value, it characterizes the real option
as a tool for mitigating downside risk while allowing most of the upside poten-
tial of a project to flow through to its owner. We do this by simulating the
value generated by a real option strategy and comparing it to the alternative
strategies of immediate development (based on the NPV rule) and delay as long
as possible (generating a european call option).

We compare the cumulative distributions of simulated value for the three
strategies and compare them by means of total dominance, and second degree
stochastic dominance. Real options do not totally dominate, nor do they always
dominate the other two strategies in the second degree. However, the analyst
can examine the graphs of the cumulative distributions to see what sort of risk-
averse utility function would be needed to justify a preference of one of the
alternatives to a real option strategy.

The simulations are performed both for a risk-neutral distribution and for
a risk-averse distribution. The distributions differ from each other by a risk
premium in the drift of underlying asset value. Strictly speaking, stochastic
dominance analysis should be performed on the true (risk-averse) distribution,
rather than the risk-neutral distribution. Thus, dominance analysis performed
on the risk-neutral distribution implicitly assumes there is no risk premium.



      

1 Introduction

There are three common methods of accounting for risk in capital budgeting
and valuation of real assets.

The most popular textbook method is to calculate a cost of capital that
adjusts for risk. In general, the discount rate is adjusted for a risk premium
that depends on a measure of systematic risk (β) and price of risk reduction
(λ). These risk premia can be measured with the capital asset pricing model
(CAPM), consumption CAPM or arbitrage pricing theory (APT). Alternatively,
expected cash flows can be adjusted by a risk premium calculated from these
models and the result discounted at the riskless rate of return to get a certainty-
equivalent model. These methods consider single point measures of value (or
net present value) and typically only characterize risk by the second moment
(or co-moment with a systematic risk variable) of the project cash flows. This
can be motivated by arbitrage considerations, which show that in general, there
is some random variable against which the co-moments sufficiently measure the
risk premium in market valuation. Capital budgeting decision-making simply
comes down to comparing the value of a project to its cost and proceeding if
the net benefit is positive.

Another widely advocated approach is to use Monte Carlo simulation1 of
cash flows and project values to assess the total risk profile of the project. The
analyst can see the whole distribution of values, including means, high-order
moments, medians, and other quantiles. Capital budgeting decisions are more
ad hoc in this situation, since there is little theory to guide the analyst as to an
appropriate tradeoff between mean payoff and risk measures such as variance
of payoff or probability of loss. The analyst could assign a utility function to
the payoffs and compare the expected utility of the project to the utility of the
investment, but it is harder to identify a utility function if there is a separation of
ownership and control (e.g. multiple owners). However, the theory of stochastic
dominance can provide an incomplete ordering of various investment projects
and provide some guidance in capital budgeting. This approach works well if
the utility function is separable and allows consideration of the projects under
consideration in isolation. For example, if the project represents almost all of
the risky wealth of its owners, the utility of the risky cash flow stream can
be used in capital budgeting decisions. This may fail to work if the project
is not separable from other sources of wealth because of hedging effects from a
correlation between the project and existing wealth or because the mere presence
of risky wealth means that the derived utility for incremental wealth coming
from another project does not necessarily satisfy the von Neumann Morgenstern
assumptions.2

1The phrase “Monte Carlo simulation” has narrow meanings within the mathematics and
computer science literature. Here we use the broad meaning used in finance, in which input
variables are simulated using a pseudo-random number generator and the output is examined.

2Dybvig and Ross [1] studied portfolio efficient sets, which are sets of portfolios (or firms or
projects) that are not second-degree dominated. That is, an efficient portfolio is one that would
be chosen by some risk-averse expected-utility-maximizing individual. A linear combination
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The third approach to capital budgeting is based on the dynamic changes in
the value of a project. Real option value arises because there may be an increase
in project value arising from delay. By delaying the project, information can be
acquired and risk resolved. Delay may be optimal if the underlying asset value
drifts upward at a rate that exceeds the discount rate. However, if the rate of
upward drift (adjusted for a risk premium) is less than the the discount rate,
there is convenience value in developing the project early, which must be traded
off against the risk-reduction benefits of delay. Real option analysis assesses
this optimal delay by using a decision tree (lattice) or some other dynamic
programming approach. Real option analysis can also utilize the risk-return
models of the first approach by assessing certainty-equivalents of the various
policies. The certainty-equivalents are typically calculated by adjusting the true
probability distribution for a risk premium to get a “risk-neutral” distribution.
Risk-neutral expectations are certainty-equivalents.3

It is generally agreed that real option analysis gives the optimal solution to a
capital budgeting problem, and calculates the best estimate of asset value when
real options are present. However, real option analysis merely gives a point
estimate of project value and a description of optimal exercise strategy over the
time-state space. It does not provide the analyst with other assessments of risk
that they would get from a simulation analysis. Analysts are quite accustomed
to using simulation as a tool for sensitivity analysis, in part because they are
uncertain about the parameters of the underlying process and want to assess
the likelihood of their decision resulting in bad outcomes. The purpose of this
paper is to provide a simulation analysis of real (american) option decisions, in
comparison to alternative benchmarks such as NPV-based decision rules (im-
mediate development if NPV > 0) or rules to delay to the last possible minute
(exercising as in a european option strategy).

2 The Model

In this model we compare outcomes of three decision policies for a basic project
adoption problem.

Suppose there is a project that we have the option to develop. We can

of two efficient portfolios need not be efficient itself—it could be dominated by some other
portfolio. Thus, if an investor chooses an optimal portfolio on the efficient frontier and then
considers whether to add to it a new portfolio or project, making the second decision based on
stochastic dominance will not necessarily result in an undominated or efficient overall portfolio.
Since the resulting portfolio is not efficient, the project may not be optimal. However, for broad
classes of utility functions, such as those in the HARA class, these decisions are separable if the
project is independent of existing wealth. Moreover, if there is a separation of ownership and
control, the analyst will not generally have access to information about the utility functions
of the firm owners or the characteristics of the distributions of their risky wealth, so a truly
optimal decision cannot be made. A plausible approximation to the optimal decision is that
which assumes separation, so that stochastic dominance can be a useful criterion.

3The certainty-equivalent of a random variable to be observed in the future is also the for-
ward price for that random variable. This equivalence of risk-neutral expectations, certainty-
equivalents and forward prices is straightforward, but rarely highlighted.
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choose to develop the project at any time between the present and N time
periods in the future. When we develop the project we are required to pay
a fixed development cost (or exercise price) K. Upon payment of the exercise
price, the project starts to pay a dividend yield on an underlying asset S at a
constant rate δ.

The underlying asset has a random value which, over every time period, will
go up by a factor of u with probability π or down by a factor d = 1/u with
probability 1− π.

To express the residual value of the project at some future time N , and
assuming the development option has been exercised, we will include the random
payout SN , which is the value of the underlying asset at time N .

The problem is to decide when to exercise the option. One policy is to
develop the project immediately — the immediate development policy. The
net present value (NPV) of this policy is S0 −K where S0 is the value of the
underlying asset at the beginning.

Another policy is the european real option policy which only allows develop-
ment at time N . Given a realization of the model, the NPV of this policy is
max(SN −K, 0) discounted back to the present at the riskless rate of return.

The optimal policy will depend on both time and the value of the underlying
asset value at that time. We represent all possible states for the underlying asset
value as a recombining tree with N levels, which is often called a binomial lat-
tice.4 We can find the optimal policy by computing the corresponding decision
tree which tells us whether or not we should exercise the option given that we
have reached that node in the tree. The optimal policy at the leaves of the tree
(representing the last time period) is known. The optimal decisions are recur-
sively determined at the other nodes by a backward process (known as folding
back). The policy generated by this procedure will be called the american real
option policy.

In the last section we will investigate the performance of these three policies
by simulating the evolution of the underlying asset value. We will compare
the expected NPV of the policies as well as comparing the distributions of the
net future values of the policies. We will use the risk neutral probability in
the simulation, as well as a ‘real’ probability π which is adjusted by a factor
corresponding to a market cost of risk assumption.

3 Comparing Distributions

Consider two random variables X and Y which represent real-valued terminal
money payoffs for a given venture. We wish to distinguish the better of the two

4On the first level of a recombining tree there is a single node labeled S0 which will also
be called the root of the tree. It has two edges pointing to the two nodes on the next level of
the tree labelled uS0 and dS0. The node labeled uS0 points to two nodes on the next level
of the tree labeled u2S0 and udS0. The node labeled dS0 points to two nodes on the next
level labeled d2S0 and duS0. Note that since udS0 = duS0 there are exactly three nodes on
the third level. Continuing we define all the N levels of the graph, were level n has exactly n
nodes corresponding to the possible values the underlying asset S can have at time n.
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outcomes without making any additional assumptions about (market) tradeoffs
between risk and expected payoff.

First we have the notion of total dominance (or set dominance).5

Definition 3.1 For any random variables X and Y , we say that X totally
dominates Y if X(s) ≥ Y (s) for every s in the state space and X(s) > Y (s) for
at least one s. We write X >T Y .

A weaker condition than total dominance is the first degree stochastic dom-
inance of Hanoch and Levy [2] which simply expresses an investor’s preference
for more wealth to less wealth.

Definition 3.2 For any random variables X and Y , we say X stochastically
dominates Y in the first degree if any investor with a non–decreasing utility
function prefers X to Y and we write X >1 Y . That is, for every non-decreasing
utility function u, ∫

FX(x) du(x) >

∫
FY (x) du(x)

on the relevant domain, where FX and FY are the cumulative distribution func-
tions (CDFs) of X and Y .

Hanoch and Levy [2] give a simple characterization of first degree stochastic
dominance.

Theorem 3.1 Given random variables X and Y with CDFs FX and FY , then
X >1 Y if and only if FX(x) ≤ FY (x) for all x in the domain and there exists
at least one x in the domain such that FX(x) < FY (x).

A third and even weaker condition is that of second degree stochastic domi-
nance.

Definition 3.3 Given random variables X and Y then we say X stochastically
dominates Y in the second degree if every investor with a non-decreasing concave
utility function prefers X to Y (in same sense as above) and we write X >2 Y .

Note that second degree stochastic dominance precisely expresses the pref-
erences of an investor who would prefer more wealth to less wealth and less risk
to more risk.

We will write X <> Y and say X is incomparable to Y if none of the above
definitions apply. In this case, the decision of X or Y will depend on the level
of risk aversion of each individual investor.

What follows describes practical methods for testing for second degree stochas-
tic dominance. The less technical reader may wish to skip ahead to the next
section.

Hanoch and Levy [2] give the following characterization of second degree
stochastic dominance in the particular case when the CDFs of the random vari-
ables have the single–crossing property.

5Ingersoll [3] simply refers to this as dominance.
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Theorem 3.2 Given two random variables X and Y with CDFs FX and FY

and means µX and µY such that for some x0, FX(x) ≤ FY (x) for all x < x0

(and FX(x1) < FY (x1) for some x1 < x0) and FX(x) ≥ FY (x) for all x ≥ x0

then X >2 Y if and only if µX ≥ µY .

We will need a refinement of Theorem 3.2 which applies to CDFs of random
variables which have the multiple-crossing property.

Definition 3.4 Given two continuous CDFs F and G we say that [a, b] ⊂ R
is an increasing intersection interval for the (ordered) pair (F, G) if there exists
an ε > 0 such that

F < G on [a− ε, a)
F = G on [a, b]
F > G on (b, b + ε].

This is illustrated in Figure 1. We will say [a, b] is a decreasing intersection
interval for (F, G) if [a, b] is an increasing intersection interval for (G, F ). That
is, there exists an ε > 0 such that

F > G on [a− ε, a)
F = G on [a, b]
F < G on (b, b + ε].

Note that this definition allows a degenerate interval with a = b.

Theorem 3.3 Given random variables X and Y with CDFs FX and FY such
that (FX , FY ) admits finitely many intersection intervals:

[a1, b1], [a2, b2], . . . , [an, bn]

with
a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn

denote by

α0 =
∫ a1

−∞
|FY (x)− FX(x)| dx

αi =
∫ ai+1

bi

|FY (x)− FX(x)| dx for 1 ≤ i ≤ n− 1

αn =
∫ ∞

bn

|FY (x)− FX(x)| dx.

If [a1, b1] is an increasing intersection interval (from which it follows that [ai, bi]
is an increasing intersection interval if i is odd and [ai, bi] is a decreasing inter-
section interval if i is even) then X >2 Y if and only if the following system of
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Figure 1: An increasing intersection interval for (F, G).
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Figure 2: Multiple intersection intervals for the CDFs FX and FY .
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inequalities is satisfied (with at least one of the inequalities being strict)

α0 ≥ α1

α0 + α2 ≥ α1 + α3

α0 + α2 + α4 ≥ α1 + α3 + α5

...
α0 + α2 + · · ·+ α2bn−1

2 c
≥ α1 + α3 + · · ·+ α2bn−1

2 c+1

where for any real number x, bxc denotes the largest integer less than or equal
to x.

This is illustrated in Figure 2.

This result will facilitate practical comparisons between distributions whose
CDFs cross more than once. The continuity restriction for the CDFs is not
essential — it is only meant to ensure that FX − FY changes sign exactly n
times. The proof of Theorem 3.3 follows from the next result by Hanoch and
Levy.

Theorem 3.4 Given random variables X and Y with CDFs FX and FY . Then
X >2 Y if and only if ∫ t

−∞
(FY (x)− FX(x)) dx ≥ 0

for every t ∈ R, with the inequality being strict for at least one value of t.

Note that in the statements that follow, the degree of stochastic dominance
reported is the degree of dominance observed by the simulation.

4 Simulation Results

To compare policies we ran simulations of 1040 time steps (representing weekly
steps in a 20 year time frame). We fixed the input parameters

S0 = 100
K = 80

We set u = 1/d = 1.036 which compounds to an annual volatility of 26%. The
weekly riskless rate of return is r = 0.001 which compounds to a annual rate of
5.33%.

We varied the dividend yield δ. If δ = 0 then it is easy to see that there
can be no benefit for early execution and hence in this case the american real
option is identical as the european real option. Using the bisection method, we
determined that if δ > 0.003091 (17% annually) then the american real option
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policy advises immediate development and it will be identical to the immediate
development policy. Hence, we are interested in behaviour for dividend yields
between these two numbers.

For each dividend yield we consider, we ran two simulations. One simu-
lates the dynamics of the underlying asset using the risk-neutral probability π̂,
computed by the formula6

π̂ =
1+r
1+δ − d

u− d
.

The other simulation uses a value π for the true probability which is calculated
as π̂ plus an annual risk premium of 8%. That is

π = π̂ +
52
√

1.08− 1
u− d

.

Each simulation consists of 100, 000 independent runs. The code was written
in C and we used Marsaglia’s subtract-with-borrow (pseudo) random number
generator (RNG) bit mixed with the Weyl generator7.

We ran six simulations in total. As we reported earlier, the interesting
range of annual yields is between 0 and 17 percent. Experience showed that,
for annual yields near the upper end of this interval, the american and the
immediate development policy were nearly identical and hence uninteresting to
compare. We chose

Low annual dividend yield: 2.03%
Moderate annual dividend yield: 4.10%
High annual dividend yield: 8.36%

For each simulation we represent graphically the cumulative distribution
functions (CDF) for the simulated net future payoffs of the three policies we want
to compare. To construct the graph, we sorted the present value8 (discounted
at the riskless rate of interest) of the payoff for each strategy by value and
then recorded each 100th value, to get 1000 points. We then deleted right tail
values the plots lied in intervals [−$200, $1000] or [−$1000, $5000] as shown.
This never resulted in deleting beyond the upper 2% tail. In effect, we are
plotting bins of equal probability size, rather than bins of equal payoff width.

6This gives a risk-neutral expected capital growth rate of 1+r
1+δ

for the underlying asset.

With dividends, this gives risk neutral expected rate of return of 1 + r. See, for example,
Sick [6].

7We chose this RNG since it has been shown to be at least as good a generator as the
standard linear congruential generator but it has a much larger period length, 21407 as opposed
to less than 232 (on a 32-bit machine) [4, 5]. The authors feel that the default (or “canned”)
RNG supplied with many language packages is insufficient given modern day computing power
and we suggest that any reader who relies on simulation results should learn about alternate
RNGs.

8Investor utility and stochastic dominance are based on terminal value. The present value
is proportional to terminal value, but also allows a comparison with project NPV.
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Figure 3: Low dividend, no risk premium.

The european option’s CDF will appear jagged since there is a relatively small
number of possible outcomes corresponding to the 1040 possible positions at
the tips of the tree. Note also that the payoff for the american and immediate
development policies can be negative.

4.1 Low Dividend Yield, No Risk Premium

The annual dividend yield is set at 2.03% (δ = 0.0003865). No risk premium is
assumed and thus π̂ = π = 0.4998.
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Policy Simulated NPV Theoretical NPV
American Real Option $49.39 $49.39
Immediate Development $20.06 $20.00
European Real Option $44.49 $44.50

The simulated expected values are close to the theoretical values, suggesting that
it provides a good approximation. Comparing the results on each simulation
runs across the three policies yields:

X vs. Y X > Y X = Y X < Y
American vs. Immediate 99.2% 0% 0.8%
American vs. European 31.4% 63.5% 16.6%

Immediate vs. European 14.0% 0% 86.0%

The american option almost totally dominates the immediate development
strategy.

Figure 3 shows the CDFs for the three policies. Note how the american and
european options shift the left tail probabilty to the right. This risk-managment
outcome allows them to stochastically dominate the immediate development
strategy in the second degree:

American Real Option >2 Immediate Development
American Real Option <> European Real Option
European Real Option >2 Immediate Development

The presence of stochastic dominance shows that any reasonable investor will
choose the american policy over the immediate policy. The graph shows that
if the option is “in the money” the american policy outperforms the european
policy but there is a 1.3% chance that the american option will have a negative
return versus the european policy which has no chance of a negative return. This
is the only reason why the american and european policies are incomparable.
Only the most risk-averse investor would choose to adopt the european policy
in this case.

4.2 Moderate Dividend Yield, No Risk Premium

The annual dividend yield is set at 4.10% (δ = 0.0007730). No risk premium is
assumed and thus π = π̂ = 0.4944.

Policy Simulated NPV Theoretical NPV
American real option $37.24 $37.09
Immediate Development $20.11 $20.00
European Real Option $25.22 $25.12
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Figure 4: Medium dividend, no risk premium.
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X vs. Y X > Y X = Y X < Y
American vs. Immediate 65.7% 0% 34.3%
American vs. European 42.8% 49.5% 7.7%

Immediate vs. European 36.4% 0% 63.6%

Figure 4 shows the graphical comparison of the CDFs for the three policies. We
have that

American Real Option >2 Immediate Development
American Real Option <> European Real Option
European Real Option >2 Immediate Development

Stochastic dominance again shows that any reasonable investor will choose the
american policy over the immediate policy. Once again, the american policy
outperforms the european policy but there is a 7% chance that the american real
option will have a negative return. Note that the large difference in the simulated
NPV suggests that only a risk adverse investor would prefer the european policy
over the american.

4.3 High Dividend Yield, No Risk Premium

The annual dividend yield is set at 8.36% (δ = 0.0015450). No risk premium is
assumed and thus π = π̂ = 0.4835.

Policy Simulated NPV Theoretical NPV
American Real Option $25.70 $25.70
Immediate Development $20.04 $20.00
European Real Option $6.70 $6.75

X vs. Y X > Y X = Y X < Y
American vs. Immediate 38.4% 0% 61.6%
American vs. European 41.1% 42.3% 16.6%

Immediate vs. European 49.8% 0% 50.2%

Figure 5 shows the graphical comparison of the CDFs for the three policies. We
have that

American Real Option >2 Immediate Development
American Real Option <> European Real Option
European Real Option <> Immediate Development

13
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Figure 5: High dividend, no risk premium.
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Figure 6: Low dividend, risk premium.

What is interesting here is that, on any given run, the immediate development
policy will outperform the american policy 61.6% of the time but the american
policy still stochastically dominates the immediate policy. The european policy
has a very poor simulated NPV and hence most investors will choose to assume
the risk of the american policy.

4.4 Low Dividend Yield, Risk Premium

The annual dividend yield is set at 2.03% (δ = 0.0003865). An 8% annual risk
premium is assumed, so that π̂ = 0.4998 is used to find the american policy but
the true probability is π = 0.5208 is used to simulate the underlying asset value.
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Policy Simulated NPV Theoretical NPV
American Real Option $318.21 $318.98
Immediate Development $305.06 $306.42
European Real Option $282.27 $283.49

Note that these expcted NPVs are much larger than before because of the
upward drift of the risk premia. Thus, for example, the theoretical expected
NPV of immediate development is $306.42, which is larger than the $20 value
of immediate development. This is because we only discounted the future values
at the riskless rate of interest. For valuation purposes, we would either have to
use a certainty equivalent (as in the risk-neutral expectation given earlier) or use
a risk-adjusted discount rate. Since the real option gives real operating leverage
that is stochastic, the risk-adjusted discount rate is a random variable and
cannot be used in valuation. Note that discounting the intermediate dividends
at the riskless rate is equivalent to compounding intermediate dividends forward
at the riskless rate to get a future value. An investor receiving these dividends
may be able to reinvest them at a higher risk-adjusted expected rate of return,
so our approach is a somewhat conservative assessment of projects that are
developed early.

X vs. Y X > Y X = Y X < Y
American vs. Immediate 97.5% 0% 2.5%
American vs. European 79.5% 17.5% 3.0%

Immediate vs. European 53.7% 0% 46.3%

Figure 6 shows the CDFs for the three policies. We have that

American Real Option >2 Immediate Development
American Real Option <> European Real Option
European Real Option <> Immediate Development

The presence of stochastic dominance shows that any reasonable investor will
choose the american policy over the immediate policy. The graph shows that
for middle and high-end returns the american policy outperforms the european
policy but there is a 0.2% chance that the real option will have a negative return
versus the european policy which has no chance of a negative return. Given
the relatively large difference in the simulated NPV for these two policies, an
investor would have to be very risk-averse to choose the european policy over
the american.

4.5 Moderate Dividend Yield, Risk Premium

The annual dividend yield is set at 4.10% (δ = 0.0007730). An 8% annual risk
premium is assumed, so that π̂ = 0.4944 is used to find the american policy but
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Figure 7: Medium dividend, risk premium.
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the true probability π = 0.5153 is used to simulate the underlying asset value.

Policy Simulated NPV Theoretical NPV
American Real Option $249.33 $248.49
Immediate Development $247.54 $247.39
European Real Option $181.89 $181.38

X vs. Y X > Y X = Y X < Y
American vs. Immediate 33.5% 0% 66.5%
American vs. European 86.9% 10.7% 2.4%

Immediate vs. European 79.8% 0% 20.2%

Figure 7 shows the graphical comparison of the CDFs for the three policies. We
have that

American Real Option >2 Immediate Development
American Real Option <> European Real Option
European Real Option <> Immediate Development

Again we have stochastic dominance to insure the preference of the american
policy over the immediate policy. Since the american policy has only a 1.8%
chance of being negative, most investors would prefer the small burden of risk
assumed by choosing the american policy over the european policy in order to
gain the large increase in simulated NPV.

4.6 High Dividend Yield, Risk Premium

The annual dividend yield is set at 8.36% (δ = 0.0015450). An 8% annual risk
premium is assumed, so that π̂ = 0.4944 is used to find the American policy but
the true probability π = 0.5044 is used to simulate the underlying asset value.

Policy Simulated NPV Theoretical NPV
American Real Option $163.75 $162.14
Immediate Development $169.57 $169.19
European Real Option $69.62 $69.36

X vs. Y X > Y X = Y X < Y
American vs. Immediate 9.6% 0% 90.4%
American vs. European 82.9% 12.5% 4.6%

Immediate vs. European 88.0% 0% 12.0%
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Figure 8: Low dividend, risk premium.
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Figure 8 shows the graphical comparison of the CDFs for the three policies. We
have that

American Real Option <> Immediate Development
Aamericanmerican Real Option <> European Real Option

European Real Option <> Immediate Development

Analysis in this case is more difficult. Most investors will rule out the european
policy due to the low simulated NPV. But notice that in this case the immediate
development policy has a slightly higher simulated NPV than the american
policy but the american policy does carry less risk. The individual investor will
have to decide if the increase in NPV gained by choosing the immediate policy
is worth the extra risk assumed.

5 Conclusion

This paper proposes that real options analysts consider using simulation to char-
acterize the risk-management advantages of real options. This allows a manager
representing the owner of a real option useful insight into the source of value
generated by a real option and some sensitivity analysis for the problem. Many
senior managers are not technically oriented, and may be reluctant to accept
a single point-estimate of value associated with a real option strategy. This
approach may make real options more palatable to these reluctant managers.

By examining the cumulative distribution function of real options strate-
gies and alternative strategies, the decision-maker can determine whether one
strategy dominates the other (in the strict sense of second degree stochastic
dominance). Alternatively, she may find that the real “almost dominates” an-
other in the sense that it almost has dominance, except for a multiple crossing
over a very narrow range of payoffs. This sometimes happened in the case
of real options with an american early exercise strategy, in comparison to the
immediate exercise exercise strategy.
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